[PDF] [PDF] NOMBRES COMPLEXES

Soit z un nombre complexe de forme algébrique a + ib On appelle Tout nombre complexe non nul z peut-être écrit sous la forme : Reconnaître la transformation du plan qui au point M d'affixe z, associe le point M' d'affixe z' avec : z' = z - 3 



Previous PDF Next PDF





[PDF] Exercice 5 : f (z) = z + E 1

2 nov 2020 · Soit f la transformation qui à tout nombre complexe z non nul associe le Soit M un point d'affixe z du cercle c de centre O et de rayon 1



[PDF] Les nombres complexes - Maths-francefr

dire que si z et z′ sont deux nombres complexes qui sont en particulier tous On peut maintenant démontrer que tout nombre complexe non nul a un Soient a et b deux nombres complexes tels que a ≠ 0 et soit (E) l'équation az + A tout point M de coordonnées (x, y), on peut associer le nombre complexe zM = x + iy



[PDF] Nombres complexes - Studyrama

IV - Les différentes écritures d'un nombre complexe non nul V - Equation Pour tout nombre complexe z il existe un unique couple ( ) nulle Le réel 0 est le seul nombre complexe qui est réel et imaginaire pur (avec x et y réels) on associe le point M dont le couple de coordonnées est ( ) Soit z un nombre complexe :



[PDF] Les nombres complexes - PanaMaths

Le réel y est appelé « partie imaginaire du nombre complexe z » et est notée : ( ) m z Soit z un nombre complexe non nul de forme algébrique z x iy complexe ) qui à tout nombre complexe z associe le nombre complexe ( ) ' f z d'affixe z par la transformation géométrique F La transformation F associant à un point du



[PDF] Chapitre 1 - Les complexes 1 Les nombres complexes - Cjoint

Tout nombre complexe non nul z = a +ib admet un inverse noté Soit f une transformation du plan complexe qui, à tout point M d'affixe z associe le point M′ ہ tout point M du plan d'affixe z distincte de i, on associe le point M′ d'affixe z ′ =



[PDF] NOMBRES COMPLEXES

Soit z un nombre complexe de forme algébrique a + ib On appelle Tout nombre complexe non nul z peut-être écrit sous la forme : Reconnaître la transformation du plan qui au point M d'affixe z, associe le point M' d'affixe z' avec : z' = z - 3 



[PDF] Nombres complexes - Normale Sup

4 sept 2007 · Tout nombre complexe non nul z admet même associer à tout vecteur du plan de coordonnées (a, b) le nombre complexe a + ib, qui sera également appelé affixe du vecteur Soit z = a+ib un nombre complexe, on appelle conjugué de z, et on Par ailleurs, les transformations de la première catégorie



[PDF] Interprétations géométriques des nombres complexes Module et

tout nombre complexe un point d'un plan semble due `a Wessel (1797) mais la méthode est plus Soit P un plan affine euclidien, P son plan vectoriel associé précédente est donc inutile si l'on sait que toute application qui conserve le produit scalaire est Si M est l'image du nombre complexe z non nul alors l' angle ̂



[PDF] Nombres complexes Exercices corrigés - Free

transformation du plan qui à tout point M d'affixe z associe le point M' d'affixe z' tel Soit a un nombre complexe non nul et différent de 1, et A son image dans le 

[PDF] resoudre graphiquement inequation f(x) 0

[PDF] merci de bien vouloir rectifier

[PDF] déterminer f'(x)

[PDF] question a poser lors d'un stage en coiffure

[PDF] résoudre graphiquement f(x) ≤ g(x)

[PDF] question a poser pendant un stage bts

[PDF] jeu pour faire connaissance adulte

[PDF] résoudre graphiquement l'inéquation f(x) g(x)

[PDF] idée jeu pour faire connaissance adulte

[PDF] jeu de connaissance ado

[PDF] jeu pour se présenter adultes

[PDF] résoudre graphiquement l'équation f(x)=g(x)

[PDF] resoudre graphiquement equation

[PDF] questions ? poser ? un réalisateur

[PDF] soit f la fonction definie sur l'intervalle [25]

[PDF] NOMBRES COMPLEXES

Ch4 : Nombres complexes (TS)

- 1/18 -

NOMBRES COMPLEXES

I. INTRODUCTION ET DEFINITION

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et -3 et 2 a pour racine2 et -2.

Par contre, aucun réel négatif n"a de racine (réelle). C"est pour pallier à cette discrimination que furent créer les nombres complexes.

Le nombre i :

On appelle

i un nombre dont le carré est -1. On décrète que i est la racine de -1. Ainsi : i2 = -1

De plus, son opposé -

i a aussi pour carré -1. En effet : (-i)2 = [(-1) × i]2 = (-1)2 × i2 = -1 Conclusion : Les deux racines de -1 sont deux nombres irréels i et -i.

Le nombre

i est appelé nombre imaginaire. L forme factorisée de x2 + 1 est (x + i) . (x - i)

Un peu d"histoire : le nombre i a longtemps été noté -1 pour la raison évidente que i a pour carré -1.

La notation i fut introduite par Euler en 1777, puis reprise par Gauss au début du XIXème siècle. Cependant le premier

à parler de nombre imaginaire fut le très cartésien Descartes en 1637.

Remarques

· IN est l"ensemble des entiers naturels. C"est l"ensemble des entiers positifs ou nuls. Dans IN l"équation x + 1 = 0 n"a pas de solution. Cette équation a une solution notée -1 , élément de l"ensemble ZZ .

· ZZ est l"ensemble des entiers relatifs. C"est l"ensemble des entiers positifs, négatifs ou nuls.

IN est contenu dans ZZ , ce que l"on note IN Ì ZZ . Dans ZZ l"équation 2x = 1 n"a pas de solution.

Cette équation a une solution notée

1 2 , élément de l"ensemble QI .

· QI est l"ensemble des nombres rationnels

C"est l"ensemble de tous les nombres de la forme

p q avec p Î ZZ et q Î ZZ * . QI contient ZZ . On a donc IN Ì ZZ Ì QI .

Dans QI l"équation x

2 = 2 n"a pas de solutions.

Cette équation a deux solutions notées

2 et -2 , éléments de l"ensemble IR.

· IR est l"ensemble des nombres réels. C"est l"ensemble des abscisses de tous les points d"une droite.

IR contient QI . On a donc IN Ì ZZ Ì QI Ì IR .

Dans IR l"équation x

2 = -1 n"a pas de solutions.

Cette équation a deux solutions notées i et -i , solutions de l"ensemble CI .

· CI est l"ensemble des nombres complexes.

C"est l"ensemble des nombres de la forme a + ib avec a Î IR et b Î IR. CI contient IR . On a donc IN Ì ZZ Ì QI Ì IR Ì CI .

Ch4 : Nombres complexes (TS)

- 2/18 -

Définition

On appelle corps des nombres complexes, et on note CI un ensemble contenant IR tel que : · Il existe dans CI un élément noté i tel que i 2 = -1. · Tout élément de CI s"écrit sous la forme a + ib , où a et b sont des réels.

· CI est muni d"une addition et d"une multiplication qui suivent les mêmes règles de calcul que celles

connues dans ô Un nombre complexe sera souvent représenté par la lettre z.

Nombres complexes particuliers

Soit un nombre complexe z = a + ib avec a Î IR et b Î IR . · si b = 0 , on a z = a , z est un réel.

· si a = 0 , on a z = ib , on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Remarques

· IR correspond à l"ensemble des points sur une droite. Un nombre réel x correspond au point d"abscisse x sur la droite. On peut donc toujours comparer deux nombres réels.

· CI , ensemble des nombres a + ib avec a Î IR et b Î IR correspond à l"ensemble des points d"un plan.

Un nombre complexe a + ib avec a Î IR et b Î IR correspond au point du plan de coordonnées (a ; b).

On ne peut donc pas comparer deux nombres complexes : il n"y a pas de relation d"ordre dans CI .

On ne peut donc pas dire qu"un nombre complexe z est inférieur à un nombre complexe z" ou qu"un

nombre complexe z est positif (c"est-à-dire supérieur à 0).

Définition :

Soit un nombre complexe z .

L"écriture z = a + ib , où a et b sont des réels, est appelée forme algébrique du nombre complexe z.

a est appelé partie réelle de z, et b partie imaginaire de z : on note a = Re(z) et b = Im(z).

Remarque

· La partie réelle de z et la partie imaginaire de z sont des nombres réels.

Propriété :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C"est-à-dire que si a, b, a", b" sont des réels, on a a + ib = a" + ib" Û (a ; b) = (a" ; b") Û ??? a = a"b = b"

Exercice 01

Soit z = 2 + 3i ; z" = i - 5.

Calculer et écrire sous la forme algébrique z + z" ; z - z" ; 2z - 3z" ; zz" ; z

2 z + z" = 2 + 3i + i - 5 = -3 + 4i z - z" = 2 + 3i - (i - 5) = 2 + 3i - i + 5 = 7 + 2i

2z - 3z" = 2(2 + 3i) - 3(i - 5) = 4 + 6i - 3i + 15 = 19 + 3i

zz" = (2 + 3i)(i - 5) = 2i - 10 + 3i

2 - 15i = 2i - 10 - 3 - 15i = - 13 - 13i

z

2 = (2 + 3i)2 = 22 + 2 x 2 x 3i + (3i)2 = 4 + 12i + 9i2 = 4 + 12i - 9 = -5 + 12i

Exercice 02

1°) Calculer (3 + 2i)(3 - 2i). En déduire la forme algébrique de 1

3 + 2i

(utiliser l"expression conjuguée).

2°) Déterminer la forme algébrique des nombres complexes : 1

1 + i ; 1

3 - i ; 1

i

1°) (3 + 2i)(3 - 2i) = (3)

2 - -(2i)2 = 9 - (-4) = 9 + 4 = 13

Ch4 : Nombres complexes (TS)

- 3/18 -

La forme algébrique de 1

3 + 2i est 3

13 - 2

13 i

2°) La forme algébrique de

1 1 + i est 1 2 - 1 2 i

La forme algébrique de

1 3 - i est 3

10 + 1

10 i

La forme algébrique de

1 i est - i

II. REPRESENTATION GRAPHIQUE

Un nombre complexe est formé de deux nombres réels. Or deux nombres réels forment un couple de

coordonnées. Ainsi, si le plan est muni d"un repère orthonormé on peut repérer tout point par un nombre

complexe. a) Affixe

Définition :

On se place dans le plan rapporté à un repère orthonormal direct (O;®u,®v) . ■ Au point M de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a +i b est l"affixe de M

■ Au vecteur ¾®V de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a + ib est l"affixe de ¾®V

■ Lorsqu"on repère un point ou un vecteur par son affixe dans un repère orthonormal direct, on dit qu"on se

place dans le plan complexe.

Exercice 03

Placer dans le plan complexe, les points d"affixes : z

1 = 2 + 3i ; z2 = 3 + i ; z3 = -1 + 2i ; z4 = 2 - i ; z5 = i

z

6 = -i ; z7 = 1 ; z8 = -i - 3 ; z9 = 2z1 - 3z2 ; z10 = z3(z4 - z2)

Propriétés

Si M a pour affixe z = a + ib et si M" a pour affixe z" = a" + ib" , avec a, b, a", b" réels, alors

· le vecteur ¾®MM" a pour affixe z" - z = (a" - a) + (b" - b)i

· OM = ||¾®OM|| = a2 + b2

· MM" = ||¾®MM"|| = (a" - a)2 + (b" - b)2 · le milieu I de [MM"] a pour affixe zI = z + z" 2 Si

¾®V a pour affixe z et

¾®V " pour affixe z", alors

¾®V +

¾®V " a pour affixe z + z".

Si k est un réel, alors k¾®V a pour affixe k z. b) Conjugué

Définition

Soit z un nombre complexe de forme algébrique a + ib. On appelle conjugué de z le nombre complexe noté -z tel que -z = a - ib.

Remarque

Si M est le point d"affixe z, le point M" d"affixe ¾z est symétrique de M par rapport à l"axe des abscisses.

Ch4 : Nombres complexes (TS)

- 4/18 -

Exercice 04

Étant donné un point M d"affixe z = a + ib , avec a et b réels. Placer ···· le point M" d"affixe z" = a - ib , ···· le point M" d"affixe z" = -a + ib , ···· le point M"" d"affixe z"" = -a - ib = - z .

Exercice 05

Soit z = 3 + 5i et z" = -2 + 3i.

Calculer

¾¾¾¾z ; ¾¾¾¾z" ; ¾¾¾¾z + ¾¾¾¾z" ; z + z" ; z + z" ; ¾¾¾¾z.¾¾¾¾z" ; zz" ; zz" .

-z = 3 - 5i -z" = -2 - 3i -z + -z" = 3 - 5i - 2 - 3i = 1 - 8i z + z" = 3 + 5i - 2 + 3i = 1 + 8i z + z" = 1 + 8i = 1 - 8i ¾z.¾z" = (3 - 5i)(-2 - 3i) = -6 - 9i + 10i +15i2 = -6 + i - 15 = -21 + i zz" = (3 + 5i)(-2 + 3i) = -6 + 9i - 10i +15i

2 = -6 - i - 15 = -21 - i

zz" = -21 - i = -21 + i

Propriétés

Pour tous nombres complexes z et z", on a :

· ¾z = z

· z.¾z est un réel positif

· z + z" = ¾z + ¾z" ; z - z" = ¾z - ¾z" ; zz" = ¾z.¾z"

· Si z" ¹ 0 (())

1 z" = 1 z" ; (()) z z" = ¾z z"

· Re(z) = z +

¾z

2 ; Im(z) = z -

¾z 2i · z est réel Û z = ¾z ; z est imaginaire pur Û z = - ¾z

Démonstrations :

Soient les nombres complexes écrits sous la forme algébrique : z = a + ibi et z" = a" + ib".

· -z = a - ib donc ¾z = a + ib = z

· z.

¾z = (a + ib)(a - ib) = a2 - (ib)2 = a2 - (-b2) = a2 + b2 donc z.¾z est un réel positif .

· z + z" = a + ib + a" + ib" = (a+a") + i(b+b") comme (a+a") et (b+b") sont des réels, on obtient z + z" = (a+a") - i(b+b") = a - ib + a" - ib" = ¾z + ¾z" · zz" = (a + ib)(a" + ib") = aa" + iab" + ia"b + bb"i

2 = (aa" - bb") + i(ab" + a"b)

comme (aa" - bb") et (ab" + a"b) sont des réels, on obtient zz" = (aa" - bb") - i(ab" + a"b).

D"autre part

¾z.¾z" = (a - ib)(a" - ib") = aa" - iab" - ia"b + bb"i 2 = (aa" - bb") - i(ab" + a"b) donc zz" = ¾z.¾z"

· Si z" # 0 1

z" = 1 a" + b"i = a" - b"i (a" + b"i)(a" - b"i) = a" - b"i a"2 + b"2 = a" a"2 + b"2 +i - b" a"2 + b"2 Comme a" a"

2 + b"2 et - b"

a"2 + b"2 sont des réels, on en déduit (()) 1 z" = a" a"2 + b"2 + ib" a"2 + b"2

D"autre part

¾z" = a" - ib", donc 1

¾z" = 1

a" - b"i = a" + b"i (a" - b"i)(a" + b"i) = a" + b"i a"2 + b"2 = a" a"

2 + b"2 + ib"

a"2 + b"2 Donc 1 z" = 1 z"

Ch4 : Nombres complexes (TS)

- 5/18 -

· Si z" # 0 (())

z z" = (())z x 1 z" = -z x (()) 1 z" (d"après la propriété sur le produit) -z x 1 z" (d"après la propriété précédente) ¾z z"

· z +

¾z

2 = a + bi + a - bi

2 = 2a

2 = a = Re(z) ; z -

¾z

2i = a + bi - (a - bi)

2i = 2bi

2i = b = Im(z)

· z =

¾z Û a + ib = a - ib Û a + ib - a + ib = 0 Û 2ib = 0 Û b = 0 Û Im(z) = 0 Û z réel

· z = -¾z Û a + ib = -a + ib Û 2a = 0 Û a = 0 Û Re(z) = 0 Û z imaginaire pur

Exercice 06

1°) Écrire sous la forme algébrique les nombres complexes suivants :

1

2 + 7i

; 43 - i ; 2 - i

5 + 3i ; i

1 - 3i ; 2 + i

i

2°) Écrire plus simplement le nombre complexe

7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i

1°)

1

2 + 7i

= 2 - 7i (2 + 7i)(2 - 7i) = 2 - 7i

22 - (7i)2 = 2 - 7i

4 + 49 = 2

53 - 7

53 i
4

3 - i = 4(3 + i)

3 - i)(3 + i) = 4(3 + i)

3 2 - i 2 = 4(3 + i)

3 + 1 = 4(3 + i)

4 = 3 + i

2 - i

5 + 3i

= (2 - i)(5 - 3i) (5 + 3i)(5 - 3i) = 10 - 6i - 5i + 3i 2

52 - (3i)2 = 10 - 11i - 3

25 + 9 = 7

34 - 11

34 i
i

1 - 3i

= i(1 + 3i) (1 - 3i)(1 + 3i) = i - 3i 2

12 - (3i)2 = i + 3

1 + 9 = 3

10 + 1

10 i 2 + i i = (2 + i)(i) i

2 = 2i - 1

-1 = 1 - 2i

2°) 7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i = (7 + 5i)(27 + 2i)

(2

7 - 2i)(27 + 2i) + (27 - 2i)(7 - 5i)

7 + 5i)(7 - 5i)

= 14 + 2

7 i + 107 i - 10

28 + 4 + 14 - 107 i - 27 i - 10

7 + 25

= 4 + 12 7 i

32 + 4 - 127 i

32 = 8

32 = 1

4

III. FORME TRIGONOMETRIQUE

Rappel

Le plan étant rapporté à un repère orthonormal direct (O;®u,®v) , soit

M un point de coordonnées (a ; b) .

Si M ¹ O, on dit que (r ; q) est un couple de coordonnées polaires de

M lorsque : r = OM et q = (

®u ,

¾®OM) [2p]

On a alors r =

a2 + b2 ; a = r cos q et b = r sin q

Si z est l"affixe de M, z = a + ib = r

cos q + i r sin q = r (cos q + i sin q) a) Module

Définition

Tout nombre complexe non nul z peut-être écrit sous la forme :

z = r(cos q + i sin q) , avec q Î IR et r Î IR+* , qui est une forme trigonométrique de z.

M( z) r a b q O

Ch4 : Nombres complexes (TS)

- 6/18 -

Propriété

Si deux nombres complexes z et z" sont écrits sous forme trigonométrique : z = r(cos q + i sin q) et z" = r" (cos q" + i sin q"), on a : z = z" Û ??? r = r" q = q" [2]

Définition

Soit le nombre complexe z de forme algébrique a + ib et soit M le point d"affixe z. On appelle module de z le nombre réel positif r = OM = a2 + b2

On note r = | z |

Remarque

La notation | z | ne risque pas de prêter à confusion avec la notation de la valeur absolue puisque lorsque x

est un nombre réel, on a r = OM = | x | .

Pour un réel x, |

x | pourra être lu indifféremment "valeur absolue de x" ou "module de x".

Pour un nombre complexe non réel z , |

z | sera lu impérativement "module de z".

Exercice 07

1°) Calculer le module de chacun des nombres complexes :

quotesdbs_dbs31.pdfusesText_37