[PDF] [PDF] Examens corrigés dAnalyse Complexe - Département de

Exercice 1 Soit un développe alors en série de Laurent : f(z) = ∞ Avec s ∈ R réel, s > 1, en prenant le logarithme et en utilisant le développement en série



Previous PDF Next PDF





[PDF] Quelques exercices corrigés (2)

On se retrouve donc à vouloir développer en série de Laurent la fonction z ↦→ z2 sin(z2) , qui est une fonction holomorphe en 0 ; ce développement sera donc  



[PDF] L3 – Analyse complexe - feuille dexercices n Dans ce qui suit, D

a) Donner le développement en série enti`ere de f dans le disque z < 1 b) Trouver le développement en série de Laurent de f dans la couronne 1 < z < 2



[PDF] Résidus et applications Quelques notions à savoir avant la - LIPN

1 (1 − z)3 en z0 = 1 Solution 1 1 La fonction sin est holomorphe en π/4 Son développement en série de Laurent se confond donc avec 



[PDF] TD 4 Singularités, résidus

lorsque f est une fonction holomorphe sur U, zo ∈ U et n ∈ N Exercice 3 Déterminer la série de Laurent de f(z) = 1 z(z−1)(z−2) dans les couronnes suivantes:



[PDF] Exercices corrigés sur les séries entières

Exercice 1 Déterminer le rayon de convergence des séries entières Exercice 7 Calculer le développement en série entière en zéro des fonctions suivantes :



[PDF] Examens corrigés dAnalyse Complexe - Département de

Exercice 1 Soit un développe alors en série de Laurent : f(z) = ∞ Avec s ∈ R réel, s > 1, en prenant le logarithme et en utilisant le développement en série



[PDF] Corrigé

Corrigé 1 Soit U = {1 < z < 2} et soit f : U → C une fonction holomorphe On note unicité il s'agit du développement en série de Laurent de f dans la couronne



[PDF] Analyse complexe - école normale supérieure dOran (ENS dOran )

z( (2z 1)dz φ 2πi+Res(/,0) + Res)/, 1 2*,φ 2πi+ 1 + 2 log 3 2, 6 4 Exercices 6 4 1 Exercices résolus Exercice 6 1 Donner le développement en série de Laurent 



[PDF] Analyse complexe

ROMBALDI J -É , Exercices et problèmes corrigés pour l'agrégation de Développement en série entière d'une fonction holomorphe 55 Séries de Laurent



pdf Séries de Laurent - univ-toulousefr

ln(x) = X ? 1)n (?1)n+1 sur ]0 2[ e`(z) ? z = 0 sur ]0 2[ donc sur D(1 1) par prolongement analytique On peut en déduire des développements en série entière au voisinage d’un point arbitraire a ? C? de logarithme b : en effet z 7? `(z a) + b est alors un logarithme sur D(a a) Exemple



TD 10 - Séries de Laurent Calculs de résidus - GitHub Pages

Un exercice qui n’a rien à voir Rappel:lethéorèmedeMoreraSifestcontinuesurunouvertUetquesonintégrale surtouttriangleestnullealorsfestholomorphe Remarque : aucune hypothèse n’est faite sur l’ouvert U Exercice7 Autourduprincipederé?exiondeSchwarz a) SoitUunouvertdeC OnsupposequefestholomorphesurUnUR etcontinue



F7 : Séries de Laurent théorème des résidus et ses applications

Exercice 2 Donner le développement en série de Laurent des fonctions suivantes dans des couronnes maximales centrées en : a) z3 exp(1=z); = 0; b) 1 z2 (3 + i)z+ 3i; 2f0;3;ig; c) ez z 1; 2f1;ig: Exercice 3 Déterminer les singularités isolées et la nature de chaque singularité des fonctions dé nies par : a) cosz z; b) exp(1=z); c) log(1



Images

3 1 Développement en série de Laurent Soit rR 2 R+ [{+•}0 r < R L’ouvert C(a;r;R)={z 2 C;r < z a < R} est appelé couronne de centre a de rayon intérieur r et de rayon extérieur R Puisque C(a;r;R) n’est pas un domaine simplement connexe la formule de Cauchy n’est pas valable pour tout lacet G de W

[PDF] exercices corrigés diagonalisation et trigonalisation

[PDF] exercices corrigés diagonalisation trigonalisation matrices

[PDF] exercices corrigés diagramme état transition

[PDF] exercices corrigés droit des affaires pdf

[PDF] exercices corrigés du traitement de signal

[PDF] exercices corrigés economie internationale pdf

[PDF] exercices corrigés economie monétaire

[PDF] exercices corrigés écrits professionnels pdf

[PDF] exercices corrigés en chimie organique pdf

[PDF] exercices corrigés en mécanique des fluides

[PDF] exercices corrigés énergie de liaison d'un noyau

[PDF] exercices corrigés éoliennes 4ème

[PDF] exercices corrigés equation second degré

[PDF] exercices corrigés état rapprochement bancaire

[PDF] exercices corrigés excel 2010 pdf

Examens corrigés

FrançoisDEMARÇAY

Département de Mathématiques d"Orsay

Université Paris-Saclay, France

1. Examen 1

Exercice 1.Soit un ouvert connexe non vide!C, soitz02!, et soit une fonction f2O(!nfz0g)holomorphe en-dehors dez0. On suppose quefest bornée au voisinage de z

0, au sens où il existe un rayonr >0assez petit avecD

r(z0)!et il existe une constante

06M<1tels que :

sup jzz0jOn fixez12Dr(z0)avecz16=z0. (a)Dresser une figure illustrative complète et esthétique. (b)Montrer, pour0< "612 jz1z0j, que pour tout2C"(z0), on ajz1j>12 jz1z0j. (c)Montrer que :

0 =lim"!>0Z

C "(z0)f()z1d: (d)Soient les deux points :

1:=z0+rz1z0jz1z0j;

0:=z0rz1z0jz1z0:

Soient aussi deux quantités petites0< < "613

jz1z0j. On construit le contour;" àdeuxtrous de serrure de largeur2qui partent orthogonalement du cercleCr(z0)en les deux points1et0, avec contournement dez1puis dez0le long de cercles de rayon". Dresser une nouvelle figure esthétique dans laquelle tous ces éléments apparaissent clai- rement - couleurs recommandées! (e)Justifier par un théorème du cours que : 0 =Z ;"f()z1d: (f)Montrer que : 0 = 12iZ C r(z0)f()z1d12iZ C "(z1)f()z112iZ C "(z0)f()z1d: 1

2 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(g)Montrer que :

f(z1) =12iZ C r(z0)f()z1d: (h)Justifier l"holomorphie dansDr(z0)de la fonction : z7!Z C r(z0)f()zd: (i)Montrer qu"il existe une unique fonction holomorpheef2O(!)telle queef!nfz0g=f.

(j)Montrer que tout ce qui précède est encore valable en supposant plus généralement qu"il

existe un exposant06 <1et une constante06M<1tels que : f(z)6M1jzz0j(800. L"objectif est de calculer, au moyen de la méthode des résidus, les deux intégrales de Riemann généralisées : I:=Z 1 01x

2+a2dxetJ:=Z

1

0logxx

2+a2dx:

(a)Commencer par justifier l"existence deI. (b)On introduit la fonctionf(z) :=1z

2+a2. CalculerResf(ia).

(c)AvecR> a, dessiner le contour orienté fermé consistant en le segment[R;R]suivi du demi-cercle de rayonRau-dessus de l"axe réel. (d)Montrer que :

0 =lim

R!1Z

0d(Rei)(Rei)2+a2:

(e)Montrer que : I=2a: (f)On choisit la détermination de la fonction logarithme complexe sur : CiR; définie, pourz=reiavecr >0et avec2 < <32 , parlogz:=logr+i. Sur cet ouvertCniR, on considère la fonction holomorphe : g(z) :=logzz 2+a2: Avec0< " < aet avecR> a, dessiner le contour orienté fermé consistant en le segment[R;"], suivi du demi-cercle de rayon"au-dessus de l"axe réel, suivi du segment [";R], suivi du demi-cercle de rayonRau-dessus de l"axe réel. (g)Montrer que :

J=2aloga:

Indication:Calculer d"abordResg(ia)en utilisant la valeur delogi, que l"on déterminera auparavant.

1.Examen 1 3Exercice 3.Dans un ouvert connexe non vide

C, pour une courbeC1pm(continue)

: [0;1]! fermée (0) = (1)que l"on identifie [0;1]à son image, on définit l"indicede tout pointw2Cn par rapport à par l"intégrale : Ind (w) :=12iZ dzzw: (a)Avec :=C, en utilisant deux couleurs différentes, tracer une courbe qui tourne2 fois autour de0, puis une autre qui tourne+3fois. (b)On introduit, pourt2[0;1], la fonction : (t) :=exp Zt 0 0(s) (s)wds

Calculer la dérivée det7!(t)

(t)wsur[0;1]. (c)Montrer que : (t) = (t)w (0)w(8t2[0;1]): (d)Montrer que : Ind (w)2Z: (e)On suppose dorénavant que l"ouvert connexe est de plussimplement connexe.

D"après le cours, siw2

est un point de référence fixé, cela implique que deux courbes

0: [0;1]!

et

1: [0;1]!

quelconquesC1pm(continues) allant de w=

0(0) =

1(0)à un autre point quelconque

0(1) =

1(1) =z2

sont toujours homotopesà travers une famille continuet7! s(t) s2[0;1]de courbesC1pmtoutes conte- nues dans

Justifier alors que toute fonction holomorpheg2O(

)possède uneprimitiveG2 O( )avecG0=g. (f)Justifier que pour toute courbeC1pmfermée , on a : 0 =Z g(z)dz(8g2O(

Maintenant, soit un ouvert connexe non vide!

, soitw2!et soit un rayon R>0tel queDR(w)!. Toute fonction holomorphef2O!nfwgen-dehors dewse développe alors en série de Laurent : f(z) =1X n=1a nzwn; normalement convergente sur les compacts deDR(w), avec des coefficients donnés par la formule : a n:=12iZ C r(w)f()(w)n+1d(n2Z); indépendamment du choix d"un rayon intermédiaire0< r 2Cr(w)f()rn:

4 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(h)Montrer que :

limsup

1 njnjpjanj6r:

(i)Montrer que le rayon de convergence de la série entière : 1X n=1a nZn vaut1. (j)Montrer que la partie singulière : h(z) :=1X n=1a nzwn définit une fonction holomorphe dansCnfwg. (k)Montrer l"holomorphie dans!de la fonction : g:=fh2O(!): (l)On suppose maintenant que l"ouvert connexe et simplement connexe

Ccontient

un nombre finiL>1de points-singularités distinctsw1;:::;wL2 , et on considère une fonction holomorphe : f2O fw1;:::;wLg en-dehors de ces points, ainsi qu"une courbeC1pmfermée : w1;:::;wL: Enfin, on introduit les parties singulières defdans certains petits voisinages ouverts!`3 w h `(z) :=1X n=1a `;nzw` n(16`6L):

Montrer l"holomorphie partout dans

de la fonction : g(z) :=f(z)h1(z) hL(z)2O( (m)Établir laformule des résidus homologique : 12iZ f(z)dz=Ind (w1)Resf(w1) ++Ind (wL)Resf(wL):

Exercice 4.

[Sans indications] (a) Pour2R+, montrer que :Z1 1e

2ix(1 +x2)2dx=2

1 + 2 e2:

(b)Montrer que :Z1

1dx(1 +x2)n+1=135(2n1)246(2n):

2.Corrigé de l"examen 1 52. Corrigé de l"examen 1

Exercice 1.

(a) Voici une figure élémentaire.! z 0D r(z0) C "(z0)z 1 (b)Avec0< "612 jz1z0j, pour tout2C"(z0), à savoir pour tout2Cavec jz0j=", on a en effet grâce àjabj>jaj jbj:z1=z1z0(z0) >jz1z0j jz0j =jz1z0j " >jz1z0j 12 jz1z0j 12 jz1z0j: (c)Quand0< "612 jz1z0jtend vers0, on majore en utilisant l"hypothèse quejfj6M surC"(z0), indépendamment de" >0: Z C "(z0)f()z1d6max

2C"(z0)1jz1jmax

2C"(z0)f()Z

2 0 "ieid 6

2jz1z0jM"2!"!00:

(d)Les deux points :

1:=z0+rz1z0jz1z0j;

0:=z0rz1z0jz1z0

sont situés sur le diamètre du cercleCr(z0)qui contient le segment[z0;z1]. Le contour;" demandé se représente alors comme suit.

6 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, Francez

1 z 0quotesdbs_dbs7.pdfusesText_13