[PDF] [PDF] Approaches to Representing Aircraft Fuel Efficiency - CORE

parameters measures the fuel efficiency performance of the aircraft at a single body transport aircraft like the Airbus A380 with 500+ seats, as seen in Figure 4 B747-2 B747-4 B747-3 B747-1 B747-SR >1000km >1000km



Previous PDF Next PDF





[PDF] Transatlantic airline fuel efficiency ranking, 2017 - International

9 sept 2018 · Ireland BA flew more than half of its departures on inefficient Boeing 747 and Airbus A380 aircraft, leading to an average aircraft fuel burn 8 



[PDF] Fuel efficiency - Transport & Environment

analyses of aircraft fuel efficiency, it can be concluded that the last piston- The Airbus A380 based on the 12 reduction with respect to the B747-400, cited by



[PDF] Aircraft Fuel Consumption - HAW Hamburg

13 déc 2017 · In order to demonstrate the growing efficiency of new aircrafts, a comparison between the 1980s built Boeing 747-200B, with the 2005 introduced 



[PDF] Fact Sheet More Efficient, Greener and Quieter Aircraft - Sustainable

While air freight remains the least fuel efficient mode of transport it is a vital service to dominated by older Boeing models such as the 747-400F newer, more efficient While not a dedicated freight aircraft, the Airbus A380, the world's largest 



[PDF] Flying more efficiently: Joint impacts of fuel prices, capital costs and

We investigate the factors that affect airlines' choice of fleet fuel economy using plane- level data for capital costs and fleet size on airline fleet fuel economy, CCEP Working Paper 1810, BOEING 747 100 423 Aircraft Version: A380



[PDF] Approaches to Representing Aircraft Fuel Efficiency - CORE

parameters measures the fuel efficiency performance of the aircraft at a single body transport aircraft like the Airbus A380 with 500+ seats, as seen in Figure 4 B747-2 B747-4 B747-3 B747-1 B747-SR >1000km >1000km



[PDF] A380 Special edition - Airbus

We at Airbus firmly believe the A380 is a cost-effective and versatile revenue than on its B747s Beyond the improvement in efficiency, freeing up a valuable slot (electricity, air, water fuel, passenger and cargo handling, towing ) • Rescue 



[PDF] ICCAIA presentation - ICAO

23 août 2008 · Figure 9-3: Trend in transport aircraft fuel efficiency A380-800 - 1,000pax • Range: To test this year on a Boeing 747 using jatropha oil



[PDF] Air Transport and Energy Efficiency - Pubdocsworldbankorg

Figure 1 - Fuel Efficiency Gains Since the Early Jet Age Figure 31 - The Boeing 747-8 uses advanced technologies to improve environmental impact (16 February 2008, an Airbus A380 conducted the first test flight of a commercial



[PDF] the 2 1 stcenturyjetliner - Tobias Baldauf

AIRBUS A380 - the 21st century jetliner - 1 - AIRBUS t h e 2 1 A380 burns 12 less fuel than Boing 747, which makes it a “highly efficient aircraft” 2 An effect

[PDF] a380 vs b747 8i

[PDF] a380 vs boeing 747 800

[PDF] a380 weight

[PDF] a380 weight fully loaded kg

[PDF] a380 wing dimensions

[PDF] a86 duplex tunnel paris

[PDF] a86 ouest tunnel paris france

[PDF] a86 paris tunnel height

[PDF] a86 tunnel under paris

[PDF] a86 west tunnel paris

[PDF] a86 west tunnel paris france

[PDF] aa 20 questions test

[PDF] aa accounts

[PDF] aa annual report 2018

[PDF] aa benefits

APPROACHES TO REPRESENTING AIRCRAFT FUEL EFFICIENCY PERFORMANCE FOR THE PURPOSE OF A COMMERCIAL AIRCRAFT CERTIFICATION STANDARD Brian M. Yutko and R. John Hansman This report is based on

the Masters Thesis of Brian M. Yutko submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology.

Report No. ICAT-2011-05 May 2011 MIT International Center for Air Transportation (ICAT) Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA

-2- [PageIntentionallyLeftBlank]

-3- ApproachestoRepresentingAircraftFuelEfficiencyPerformanceforthePurposeofaCommercialAircraftCertificationStandardbyBrianM.YutkoSubmittedtotheDepartmentofAeronauticsandAstronauticsonMay19,2011inPartialFulfillmentoftheRequirementsfortheDegreeofMasterofScienceinAeronauticsandAstronauticsAbstractIncreasingconcernoverthepotentialharmfuleffectsofgreenhousegasemissionsfromvarioussourceshasmotivatedtheconsiderationofanaircraftcertificationstandardasonewaytoreduceaircraftCO2emissionsandmitigateaviationimpactsontheclimate.Inordertodevelopacommercialaircraftcertificationstandard,afuelefficiencyperformancemetricandtheconditionatwhichitisevaluatedmustbedetermined.Thefuelefficiencymetricformofinteresttothisresearchisfuel/range,wherefuelandrangecaneitherbeevaluatedoverthecourseofareferencemissionoratasingle,instantaneouspoint.Amission-basedmetricencompassesallphasesofflightandisrobusttochangesintechnology;however,definitionofthereferencemissionrequiresmanyassumptionsandiscumbersomeforbothmanufacturersandregulators.Aninstan taneousmetr icbasedonfundamentalaircraftparametersmeasuresthefuelefficiencyperformanceoftheaircraftatasinglepoint,greatlyreducingthecomplexityofthestandardandcertificationprocess;however,asinglepointmightnotberobusttofuturechangesinaircrafttechnology.Inthis thesis,typica laircraftoperations areassessedinorde rtodevelopevaluationassumptionsforamiss ion-basedmetric,Bl ockFueldividedbyRange( BF/R),andaninstantaneousmetric,incrementalfuelburnperincrementaldistance(inverseSpecificAirRange(1/SAR)).Opera tingpatternsandfuelburnmapsareusedtodemonstratetheimportanceofmissionrangeonfleetfuelburn, andthu stheimportanceofaproperlydefinedrangeevaluationconditionforBF/R.Anevaluationconditionof40%oftherangeatMaximumStructura lPayload(MSP)limitedbyMaximumTakeof fWeight(MTOW)isdeterminedtoberepresentativeforthemi ssion-basedmetric.Apo tentialevaluationconditionfor1/SARisdeterminedtobeoptimalspeedandaltitudeforarepresentativemid-cruiseweightdefinedbyhalfofthedifferencebetweenMTOWandMaximumZeroFuelWeight(MZFW).TodemonstratesuitabilityasapotentialsurrogateforBF/R,correlationof1/SARwithBF/Risshownforthecurrentfleet,andacasestudyofpotentialfutureaircrafttechnologiesispresentedtoshowthecorrelationofimprovementsinthe1/SARmetricwithimprovementsinBF/R.ThesisSupervisor:Dr.R.JohnHansmanTitle:Professor,DepartmentofAeronauticsandAstronautics

-4- [PageIntentionallyLeftBlank]

-5- AcknowledgementsIwo uldliketothankDr .R.JohnHansmanforhisunwaveringsupportandguidancethroughoutmygraduatecareer.Thisthesiswouldnotexistwithouthim.IwouldalsoliketothankDr.PhilippeBonnefoyforhissupportandadvice.Manyoftheconceptsinthisthesisareatleastpartiallyduetohisincredibleinsight.Itwouldbedifficulttofindsomeonethatworksharderandisamoreobjectiveandcapableresearcher.ThankstomysponsorsattheFAAandEPA.Thisworkwasmadepossiblebytheirinterest,anditwasapleasuretocollaborate.Finallyandmostimportantly,toallofmyfriends,family,andespeciallymyparents:despiteallofthe challengesthroughout theyears,you'vesupportedmefr omthetime IwasgrowingupinasmallcoaltowninNortheastPennsylvaniauntilnow.Icouldn'thavedoneanyofthiswithoutyou.

-6- [PageIntentionallyLeftBlank]

-7- TableofContents Abstract...........................................................................................................................................3Acknowledgements......................................................................................................................5TableofContents..........................................................................................................................7ListofFigures..............................................................................................................................10ListofTables................................................................................................................................12AcronymsandAbbreviations...................................................................................................13Chapter1:Introduction.............................................................................................................141.1Motivation....................................................................................................................................141.2CommercialAircraftCertificationStandardasaCO2MitigationTechnique.................151.3Definitions....................................................................................................................................161.4CommercialAviationCO2Emissions......................................................................................171.5TheRoleofRepresentingAircraftPerformanceforaCertificationStandard...............181.6ApproachestoMeasuringAircraftFuelEfficiencyPerformance......................................19Chapter2:ResearchObjectiveandApproach......................................................................212.1Objective.......................................................................................................................................212.2Approach.......................................................................................................................................212.3DataSources.................................................................................................................................212.4Operationaldatabases...............................................................................................................222.4.1CommonOperationsDatabase(Global)...............................................................................222.4.2BureauofTransportationStatistics(BTS)Form41T-100(UnitedStates)......................222.5AircraftPerformanceModels...................................................................................................232.5.1Piano-5....................................................................................................................................232.5.2Piano-X....................................................................................................................................24Chapter3:Metrics,Parameters,andCategories..................................................................253.1MissionandInstantaneousPerformanceMetrics................................................................253.1.1FullMission.............................................................................................................................253.1.2SimplifiedMission..................................................................................................................263.1.3Instantaneous.........................................................................................................................273.2MeasuresofOutput.....................................................................................................................293.2.1Measureofdistancetraveled................................................................................................293.2.2MeasureofPayload(orProxy).............................................................................................303.2.3ConsiderationsforIncludingSpeedintheMetric...............................................................313.3AircraftCategoriesandAircraftList.......................................................................................33Chapter4:TypicalAircraftOperations..................................................................................354.1Payload..........................................................................................................................................354.2Range.............................................................................................................................................374.3FuelBurn......................................................................................................................................414.4TakeoffWeights..........................................................................................................................534.5Altitude..........................................................................................................................................544.6Speed.............................................................................................................................................554.7SummaryofTypicalAircraftOperations...............................................................................56Chapter5:EvaluationConditionsforaFullMissionMetric...............................................575.1FuelEfficiencyPerformanceSensitivitytoEvaluationConditions...................................575.2PrincipleforConstructingWeightedMetric.........................................................................59

-8- 5.3FullMissionMetricWeightedbyRangeFrequency.............................................................605.4FullMissionMetricWeightedbyFuelBurn...........................................................................635.5IssuesResultingfromEvaluationConditionsWeightedbasedonOperationalData...64Chapter6:EvaluationConditionsforanInstantaneousSinglePointMetric.................656.1AtmosphericConditions............................................................................................................656.2SpeedandAltitude......................................................................................................................656.3Weight...........................................................................................................................................686.4PotentialConsiderationswithRegardtoSinglePointEvaluationSchemes...................716.5CorrelationwithBF/R................................................................................................................72Chapter7:CaseStudies-SpecificAirRangeandBF/RforFutureAircraftTechnologies................................................................................................................................737.1CaseStudyVehicle:D-8.5...........................................................................................................737.2ImpactsofMeasurementonFutureAircraftDesigns..........................................................75Chapter8:Conclusions..............................................................................................................77Chapter9:Bibliography............................................................................................................79Chapter10:Appendix................................................................................................................8110.1AppendixA:BackgroundReviewofAviationandNon-AviationCertificationStandards................................................................................................................................................8110.1.1NOx........................................................................................................................................8110.1.1.1Metric..............................................................................................................................................8110.1.1.2CorrelationParameter...................................................................................................................8210.1.1.3EvaluationConditions....................................................................................................................8210.1.2CorporateAverageFuelEconomy(CAFE).........................................................................8210.1.2.1Metric..............................................................................................................................................8210.1.2.2CorrelatingParameter...................................................................................................................8310.1.2.3EvaluationConditions....................................................................................................................8310.1.2.4ScopeofApplicability....................................................................................................................8410.2DesiredAttributesofCertificationRequirement..............................................................8410.3AppendixB:AircraftList.........................................................................................................86

-9- [PageIntentionallyLeftBlank]

-10- ListofFiguresFigure1:CO2emissions(indexedto2005)withtargetsandaspirationalgoalsfromUSCOP15andIATACO2emissionsgoalsandICAOfuelefficiencygoal(i.e.2%perannum-CO2emissionscalculationsassume2005demand).(BonnefoyY.M.,2011)..............................14Figure2:NotionalCO2CertificationStandard....................................................................................15Figure 3: Conceptual representation of aircraft level and system level inputs and outputs................17Figure4:DesignPayloadvsDesignRangeAcrosstheFleet[DataSource:Piano-X]...................18Figure5:ScreenshotofPiano5interface(Lissys,Piano-5,2010)...................................................23Figure6:ScreenshotofPiano-Xinterface.............................................................................................24Figure7:MissionandReserveAssumptionSchematic(ICCAIA,2010)..........................................26Figure8:ExamplePurchaseAgreementPerformanceGuarantee(SEC,1999).............................27Figure9:NotionalPayload-RangeDiagram.........................................................................................29Figure10:DefinitionofWeightBasedParameters(BonnefoyY.M.,2011)..................................30Figure11:HistoricalEvolutionofLaborCostsandFuelCosts(AirTransportAssociationofAmerica,2009)..................................................................................................................................32Figure12:2006Boeing737-800Operations[DataSource:BTSForm41T-100].......................35Figure13:2006USAllCarrierPayloadFrequenciesbyAircraftCategory[DataSource:BTSForm41T-100]..................................................................................................................................36Figure14:2006Boeing737-800RangeFrequency[DataSource:BTSForm41T-100]............37Figure15:2006TotalFleetUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]...............................................................................................................................................................38Figure16:2006NarrowBodyAircraftUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]............................................................................................................................................38Figure17:2006WideBodyAircraftUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]............................................................................................................................................39Figure18:April2006RegionalJetUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]..................................................................................................................................................40Figure19:2006TurboPropUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]......................................................................................................................................................40Figure20:Piano-XMissionSimulationGridonNotionalPayloadRangeChart...........................41Figure21:Bi-CubicFuelBurnInterpolation........................................................................................42Figure22:2006USAllCarrierFleetWideFuelBurn,PayloadFrequency,andRangeFrequency[DataSource:BTSForm41T-100andPiano-X].........................................................................43Figure23:WorldwideFuelBurn,Payload,andDepartures(Operations)byAircraftType[DataSource:COD].......................................................................................................................................44Figure24:2006USAllCarrierWideBodyFuelBurn,PayloadFrequency,andRangeFrequency[DataSource:BTSForm41T-100andPiano-X].....................................................44Figure25:2006USAllCarrierNarrowBodyFuelBurn,PayloadFrequency,andRangeFrequency[DataSource:BTSForm41T-100andPiano-X].....................................................45Figure26:2006USAllCarrierRegionalJetFuelBurn,PayloadFrequency,andRangeFrequency[DataSource:BTSForm41T-100andPiano-X].....................................................46Figure27:2006USAllCarrierRegionalJetFuelBurn,PayloadFrequency,andRangeFrequency[DataSource:BTSForm41T-100andPiano-X].....................................................47Figure28:April2006GlobalOperationsAboveandBelow1,000kmbyPercentDeparture(left)andPercentFuelBurn(right)[DataSource:COD]..........................................................47Figure29:April2006WorldWideOperations:%ofTotalFuelBurnedonMissions+/-1,000kmbyAircraftType[DataSource:COD]............................................................................48Figure30:April2006PercentageofFuelBurn+/-1,000kmbyAircraftType[DataSource:COD].....................................................................................................................................................51Figure31:April2006CumulativeDistributionofFuelBurn,Payload,andDepartures[DataSource:COD].......................................................................................................................................52

-11- Figure32:FuelBurnbyPhaseofFlightforEachAircraftCategory[Datasource:COD].............52Figure33:HistogramofUsefulLoadatTakeoffbyAircraftCategory[DataSource:BTSForm41T-100andPiano-X].....................................................................................................................53Figure34:HistogramofAircraftGrossWeightatTakeoffbyAircraftCategory[DataSource:BTSForm41T-100andPiano-X]..................................................................................................54Figure35:Actual(blue)andIdealFlightProfileforaBoeing757-200fromBostontoSanFrancisco(Lovegren,2011)............................................................................................................55Figure36:BF/RvsMTOWEvaluatedatTwoDifferentRangeConditions[DataSource:Piano-X]...............................................................................................................................................................57Figure37:MargintoRegressionLine[DataSource:Piano-X]..........................................................58Figure38:AircraftRankedbyResidualforTwoDifferentEvaluationConditions[DataSource:Piano-X]...............................................................................................................................................59Figure39:PrincipleforConstructingWeightedMetric.....................................................................59Figure40:FuelEfficiencyPerformanceforAircraftTypesasaFunctionofR1Range[DataSource:PIANO-X](BonnefoyY.M.,2011)....................................................................................60Figure41:WeightedMetricNormalizedbySingleEvaluationConditionMetric(R1)byAircraftType.....................................................................................................................................................61Figure42:ComparisonofRangeWeightedMetrictoSingleEvaluationConditionNon-WeightedMetric[DataSource:BTSForm41T-100andPiano-X]..........................................62Figure43:WeightedMetricNormalizedbySingleEvaluationConditionMetric(0.4*R1)byAircraftType[DataSource:BTSForm41T-100andPiano-X]................................................62Figure44:ComparisonofRangeWeightedMetrictoSingleEvaluationConditionNon-WeightedMetric[DataSource:BTSForm41T-100andPiano-X]..........................................63Figure45:1/SARpercentagechangesfromoptimumasafunctionofSpeedandAltitudeforarepresentativenarrowbodyaircraft[Datasource:PIANO-X]................................................66Figure46:SpecificAirRangeSpeedandAltitudeContoursforaRangeofRepresentativeAircraftTypes(Lovegren,2011)....................................................................................................66Figure47:Example1/SARsensitivityasafunctionofspeed(fixedaltitudeandweight)forrepresentativeaircraftforfiveaircrafttypesfromthefollowingcategories:WB,NB,RJ,TP,BJ.[Datasource:PIANO-X].......................................................................................................67Figure48:IllustrativeExampleofAircraftPerformanceDependenceonAltitudeAcrosstheFleet[Datasource:PIANO-X]..........................................................................................................68Figure49:1/SARandAircraftWeightevolutionoveranIllustrativeMission(R1,MSP)foraRepresentativeNarrowBodyAircraft[Datasource:PIANO-X]...............................................69Figure50:TakeoffWeightIso-ContoursforaRepresentativeNarrowBodyAircraft(BoeingAirportPlanningGuides)................................................................................................................69Figure51:Aircraftweightfractionsacrossaircraftcategories[Datasource:PIANO-X]............70Figure52:Designphilosophydifferences:maximumstructuralpayloadandR1rangeforaircraftinfivecategories.[Datasource:PIANO-X]....................................................................70Figure53:NotionalDepictionofAircraftRobustnesstoaFlightParameter................................71Figure54:1/SARvsMTOWforPiano5AircraftFleet[DataSource:Piano5]................................72Figure55:CorrelationofBF/Revaluatedat40%R1with1/SARevaluatedat(MTOW-MZFW)/2.............................................................................................................................................72Figure56:MITConceptAircraft-D8.5..................................................................................................73Figure57:PercentImprovementsin1/SARandBF/RforAircraftinMITD8.5MorphingStudy...............................................................................................................................................................75Figure58:PercentImprovementsfromBaselineinBF/Rvs1/SAR...............................................75Figure59:NOxperformancemetric,correlatingparameter,andregulatorylevels(BonnefoyY.M.,2011).............................................................................................................................................81Figure60:RepresentativeLTOCycleforAircraftEngineCertification..........................................82

-12- ListofTablesTable1:CertificationStatusofAircraftWeightParameters(BonnefoyY.M.,2011)..................31Table2:AircraftCategories.....................................................................................................................33Table3:FullMissionPiano-XAssumptions.........................................................................................42

-13- AcronymsandAbbreviationsACARSAircraftCommunicationsAddressingandReportingSystemMLWMaximumLandingWeightANCAAirportNoiseandCapacityActMRCMaximumRangeCruiseATCAirTrafficControlMSPMaximumStructuralPayloadBEWBasicEmptyWeightMTOWMaximumTakeoffWeightBFBlockFuelMTWMaximumTaxiWeightBJBusinessJetMVPMaximumVolumetricPayloadBTSBureauofTransportationStatisticsMZFWMaximumZeroFuelWeightCAEPCommitteeonAviationEnvironmentalProtectionNACENationalAverageCarbonEmissions(Australia)CAFECorporateAverageFuelEconomyNBNarrowBodyCASFECommercialAircraftSystemFuelEfficiencyNOXNitrousOxidesCOCarbonMonoxideOEWOperatingEmptyWeightCO2CarbonDioxideOPROverallPressureRatioCPCorrelationParameterPPayloadEASAEuropeanAviationSafetyAgencyPARTNERPartnershipforAiRTransportationNoiseandEmissionsReductionEDSEnvironmentalDesignSpaceRRangeEPAEnvironmentalProtectionAgencyR1Payload-RangepointatmaximumrangeatMZFWEPNdBEffectivePerceivedNoiseLevel,indecibelsR2Payload-RangepointatintersectionofMTOWandmaximumfuelvolumeFAAFederalAviationAdministrationRJRegionalJetFLFloorAreaSASingleAisleGHGGreenhouseGasSARSpecificAirRangeGIACCGrouponInternationalAviationandClimateChangeSEWStandardEmptyWeightGVWRGrossVehicleWeightRatingSOXSulfurousOxidesH20WaterSTASmallTwinAisleHCHydroCarbonSUVSportUtilityVehicleICAOInternationalCivilAviationOrganizationTCDSTypeCertificateDataSheetISAInternationalStandardAtmosphereTOGWTakeoffGrossWeightL/DLifttoDragratioTPTurbopropLQLargeQuadTSFCThrustSpecificFuelConsumptionLRCLongRangeCruiseULUsefulLoadLTALargeTwinAisleUNFCCCUnitedNationsFrameworkConventiononClimateChangeLTOLandingandTake-OffWBWideBodyMEWManufacturerEmptyWeightWG3(ICAOCAEP)WorkingGroup3

-14- Chapter1: Introduction1.1 MotivationGrowingconcernsoverclimatechangehavecreatedanimpetusforreducingGreenHouseGas(GHG)em issionsfro mallsectorsoftheglobale conomy.Despite thesubstan tialhistoricalreductionsoffuelburnandpollutantemissionsfromcommercialaviation,itisexpectedthatfurther improvementswill berequired,especiallyifthe globallong-termdemandforairtransportationcontinuestogrowandreductionsofnetGHGemissionsaretargeted.Agreenhousegasabsorbsandemitsinfraredradiation.Thecontributionofagreenhousegastoglobalclimatechangeisafunctionofthecharacteristicsofthecompoundaswellasitsabundance.Therearemanycompoundsthatfallunderthecategoryofagreenhousegas,butcarbondioxide(CO2)hasreceivedmuchattentionforitsprevalenceinadditiontoitsharmfuleffects.CO2isevenmoreimportantbecauseitsemissioncanaffecttheclimateforcenturies(Wuebbles,PARTNER-COE-2006-004,2006).Thistraitha smotivatedmanyentitiestotakestepstocurbCO2emissions.Figure1:CO2emissions(indexedto2005)withtargetsandaspirationalgoalsfromUSCOP15andIATACO2emissionsgoalsandICAOfuelefficiencygoal(i.e.2%perannum-CO2emissionscalculationsassume2005demand).(BonnefoyY.M.,2011)Figure1showsthehistoricalandprojectedtrendofaviationCO2emissionsalongwiththeproposedgoalssetbyvariousorganizations.InJune2009,theEuropeanUnion(EU-27)seta21%reductiontargetcomparedto2005tobeachievedin2020.IntheUnitedStates,theObamaAdministrationhasstatedtargetsof17%reductionsin2020(from2005levels)andan83%reductiontargetcomparedby2050.AnInternationalCivilAviationOrganization(ICAO)globalaspirationalgoalisbasedonafuelefficiencyimprovementof2%perannum.

-15- Whilecommercial aviationcontributedapproximat ely2.5%oftotalanthropo genicCO2emissionsin2005(Lee,2009),av iation'srelativecontribution toclimatechangeisestimatedtobehigher(Solomon,2007),dueinparttothetypesofemissionsproducedandthehigha ltitudeatwhichth emajorityofemissio nsare produced.Aviati on'srela tivecontributiontoclimatechangeisonlyexpectedtogrow,asothersectorsmitigatetheiremissionsproductionwhiledemandforaviationcontinuestoincrease.TheidentificationofCO2asaleadingcontributortoclimatechange,coupledwithconcernoverthepotentiallyincreasingcontributionofCO2emissionstoclimatechangebyaviation,motivatesactiontoassessmeasurestomitigateaviation'sCO2emissionsinthenear-term.1.2 CommercialAircraftCertificationStandardasaCO2MitigationTechniqueAircraftmanufacturershaveanaturalmarket-basedincentivetoreducefuelburninordertodecreasedirectoperatingcosts.Outsideofmarket-basedincentivestoimproveaircraftperformance,thereareseveralregulatorymechanismstofurtherincentivizeaircraftCO2performanceimprovements,includingemissionstradingsystems(ETS),emissionstaxes,andcertificationstandards.Thisthesisf ocusesoncertificatio nstandardsfornewaircrafttypes.AnaircraftCO2emissionsstandardisapotentialmechanismthatcouldprovi depositivein centivesforindustrystakeholderstoimproveaircraftfuelefficiencythroughtheimplementationofnewairframeandenginetechnology.Figure2:NotionalCO2CertificationStandardAspartiallyseeninFigure2,astandardcanbecomposedofthreeaspects;(1)ametric,correlatingparameter,andevaluationconditions;(2)ascopeofapplicability;and(3)aregulatorylimit.Notseenonthisnotionalcertificationstandardareevaluationconditions

-16- andscopeofapplicability.Evaluationconditionsrefertotheconditionsatwhichthemetricandcorrelat ingparameteraremeasuredtodemonstratecompliance,an dscopeof applicabilityreferstothetypesofaircraftthatmustshowcompliancewiththestandard.Acorrelatingparameterisnotanecessarypartofthestandard(e.g.canconsistonlyofametricandaregulatorylevel).However,in somecasesitmightbeapp ropriate forthestandardtovarywithasafun ctionof aveh icleattribute,suchassize.Inthiscase,aregulatorylevelcanbedefinedasafunctionofthecorrelatingparameter.Ate chnologyforcingstandardapplie spressuretomanufactu rerstodevelopnewtechnologywhileatechnologyfollowingstandardsetsthelimitsuchthatallnewaircraftmustmeetthebesttechnologyavailable.Thepositionoftheregulatoryleveldeterminesifthestandardistechnologyforcingortechnologyfollowing.CurrentlyICAO,aUnitedNati ons(UN)committee,isundertakingaconsensus-basedattempttoestablishaCO2certificationstandardthatisdevelopedwiththetechnicalinputandcommitmentfromallmemberstates,regulatoryagencies,industryrepresentatives,andspecialinterests.Thisattemptlimitsthescopeofapplicabilitytonewaircrafttypes(i.e.notusedtoforceaircraftretirementintheexistingfleet).Thescopeofapplicabilityincludesnewjetaircrafttypeswithamaximumtakeoffweight(MTOW)above5700kgandnewturbopropaircrafttypeswithaMTOWabove8618kg.TheCO2TaskGroup(CO2TG)withinICAOistaskedwithdevelopingrecommendationsforthemetric,correlatingparameter,andevaluationconditions.1.3 Definitions1Metric:Themetricgenerallycapturestheperformanceparameterthatistobeinfluenced(i.e.FuelBurnorCO2).Plottedonthey-axisofgraphsCorrelatingParameter(CP):Basedonfundamentalvehicleattributes(e.g.size).Correlatingparametersreflectfundamentalphysicaltradeoffsbetweenvehiclecapabilityandtheperformanceparameterthatistobeinfluenced.EvaluationCondition:Conditionatwhichthevehicleperformanceismeasuredandreportedtoshowcomplia nce.The semeasurement conditionsareintendedtoberepresentativeofactualconditions,butmaynotpreciselypredictactualvehicleinday-to-dayoperations.RegulatoryLevel:setstheperformancegoals(y-axis)tobeachievedforaproductwithagivencapability(x-axis).ThisregulatorylevelfunctiongenerallycapturesthephysicsbasedrelationshipbetweenthemetricandtheCP.Subsequentregulatorylevelsaregenerallysetbyslidingdown. 1 Bonnefoy, Y. M. (2011). Assessment of CO2 Emission Metrics for a Commercial Aircraft Certification Requirement. PARTNER.

-17- 1.4 CommercialAviationCO2EmissionsFigure 3showsaschematicrepresentationofaircraftandsysteminputandoutput.EachaircraftintheNationalAirspaceSystem(NAS)usesfueltodeliverairtransportationoutput(movementofpersonsorcargo)whileproducingemissions(CO2,H2O,NOx,PM,etc).Fromfirstprinciples,totalfleet-wideCO2emissionsfromcommercialaviationarefunctionofthreekeyfactors:(1) FuelCO2content(2) AircraftFuelEfficiency(3) OperationalfactorsItem(1)isdefinedastheamountofCO2releasedperextractedunitofenergyfromthefuel.Item(2)isdefinedastheamountofproductivitydeliveredbytheaircraftduringtheuseofaunitoffuelenergy.Theoperationalfactorsin(3)arecomposedofmassloadfactorslessthan100%,airtrafficcontrolsysteminefficiencies,andairlineinefficiencies.Theproductofthesefactorsissummedoverthetotalactualairtransportationoutput,asseeninEquation1inordertoarriveattotalfleet-wideCO2emissions.€

CO 2

Emissions=

CO 2

Fuel_Energy

Output

Fuel_Energy

Output

1 LF ATC

Airlines

Metric=

Fuel_Energy

Output

Equation2ThemetriccaneasilybetransformedintoCO2/OutputbymultiplyingEquation2bytheFuelCO2Contentforareferencefuel.Thereasonfordecomposingthemetricinthiswayistoisolateaircraftperformanceimprovementsordegradationsfromthoseofthefuel.Figure 3: Conceptual representation of aircraft level and system level inputs and outputs.

-18- 1.5 TheRoleofRepresentingAircraftPerformanceforaCertificationStandardAirplanesmustoperatesafelyandefficientlywithinacomplexenvironmentofphysicalandregulatoryconstraints.Inaddition,themanufacturermustmeetawidevarietyofcustomerneedswithades irableproduct whiler eturningareasonableamounto fprofittothecompanyinordertosustainproduction(ICCAIA,2010).Therangeofaircraftsizesunderthescope ofacerti ficationstandard isboardandencompassesshort-rangeturbopropst olow-payload,long-rangebusinessjets towidebodytransportaircraftliketheAirbusA380with500+seats,asseeninFigure4.Figure4:DesignPayloadvsDesignRangeAcrosstheFleet[DataSource:Piano-X]Moreover,aircraftconsumevastlydifferentamountsoffueltoflytheirdesignmissions.Thisresultisduepartlytothefactthataircraftaredesignedwithdifferentlevelsoftechnology,butmostlybecauseoftheinherentdifferencesbetweenaircraftwithdifferingdesignspecificationsintendedtoservedifferentmarketneeds.Onewaytoattempttoreconcilethisdifferenceistoincludesomemeasureof"productivity"toattempttoaccountforvariationsacrossthefleet.Thiscanbeintheformofrange,ameasureof"whatistransported"(i.e.payloadorapayloadproxy),orspeed.Aircraftarealsodesignedwithanabilitytoflyadiversityofmissionspartlyduetooperatornetworkdemandsandtoprovideflexibilityforpotentialmultipleownersthroughouttheaircraft'sservicelifetime.Fuelefficiencyperformanceencompassesawiderangeofaircraftcapabilities.Whilemuchofthem arketingfoc usandavailablepublisheddatais usuallyconcerned withp eakperformance,mostoperationsdonotnormallytakeplaceatthesemaximumpoints.Itistheenormousoperationalflexibilityofmostaircraftthatmakethemsuitedforahostofoff-

-19- designmissions.Atthesametime,theperformancefiguresrealizedatoneconditionmaynotapplyat another(ICCAIA,2010).Duetothisdiversityofoperations,evenifanappropriatemetricwereavailable,thereisnoobviousevaluationpointaprioriwithregardtopayload,range,speed,altitude,etc.1.6 ApproachestoMeasuringAircraftFuelEfficiencyPerformanceConventionally,performancemeasures,themostpopularofwhichistheCorporateAverageFuelEfficiency(CAFE)standardforUSautomobiles,aremissionbased.Thatis,fuelburn(oremissions)aresummedoverthecour seofanassum edmissiondesignedtorepresenttypicaloperations.Definingblockfuel(or missionfuel)for thebasisofa naircraftl evelmanufacturercertificationstandardisquitecompli cated.A manufa cturerstudyidentifiedover150assumptionsandparameterdefinitionsrequiredtofullydefineamissionforasimulationtool(ICCAIA,2010).Th isgreatlycom plicatesthecertificati onprocedureandaddsevenmoreburdentodefiningarepresentativemeasureofaircraftperformance.Theremaybeanopportunitytogreatlysimplifycertificationburdenandcomplexitybyusingasingle,instantaneous measurementthatstillreflectsaircraftperformanceonadiversityoftypicalaircraftoperations.SpecificAirRange(SAR)isatraditionalmeasureofaircraftcruiseperformancewhichmeasuresthedistanceanaircraftcantravelforaunitoffuelmass.€

SAR= dR -dW f V

FuelFlow

measuredin km kg

Equation3SARisanalogousto'miles-per-gallon'forautomobiles,exceptinsteadofintegratingthemeasurementoverafullreferencemission,themeasurementwouldbetakenatasinglerepresentativepoint(e.g.55mph,2passengers,50%fuel,auxiliarypoweroff).Thisthesisattemptstodeterminehowtodefineevaluationconditionsformission-basedandinstant aneousmetrics.SAR isalsoevalu ateda gainstBF/Rforpo tentialfut uretechnologiestodetermineifasinglepointinstantaneousmeasureofaircraftperformanceisareasonablecertificationstandardsurrogateforamoredetailedbutcumbersomemission-basedmeasurement.

Chapter2: ResearchObjectiveandApproach2.1 ObjectiveTheobjectiveofthisresearchisto:1) Assesstypi calcommercialaircraftop erationsinordertoinfo rmtheevaluationofmissionandinstantaneousperformancemetrics.2) Definerepresentativeevaluationconditionsformission-basedmetrics.3) Definerepresentativeevaluationconditionsforinstantaneouspointmetrics.4) Determineifaninstantaneouspointmetriccouldbeareasonablesurrogateformission fuelmetricdespiteit sinherentsimplicity,andidentifyanydifferences.Theendre sultof thiseffortisapotentialevaluationconditionformis sionandinstantaneouspointmetricsbasedontyp icalaircraftoper ations,anassessmentofthecorrelationbetweenthetwometricsattheirevaluationconditions,andanassessmentofmissionandinstantaneousmetriccorrelationforfutureaircraftdesigns.2.2 ApproachFirst,alistmetricsandcorrelatingparametersweredefined.Operationaldatawasthenusedtoassesstypicalaircraftoperationsinordertoinformtheevaluationofmissionandinstantaneousperformancemetrics.Missionmetricswerewe ightedbyoperation parameterstodetermineifare presentati vesingleevaluationconditionsuffi cientlyrepresentstypicalaircraftoperations.Assumptionsrequiredtodefineinstantaneouspointmetricevaluationc onditionsweremadebasedonfirs tprinciplesandtypicalaircraf toperations.Finally,afutureaircraftdesignwasevaluatedtodetermineiftheinstantaneouspointmetricimprovementscorrelatewithmissionmetricimprovements.2.3 DataSourcesSeveralanalysistools anddatasourceswere usedinthe evaluationof current fleetperformance.Theassumptions,fields,andaggregationtechniquesinherenttoeachsourceareimportanttounderstandinganyresultlimitations.

2.4 Operationaldatabases2.4.1 CommonOperationsDatabase(Global)TheCommonOperationsDatabase(COD)2isaglobalflight-by-flightoperationaldatabase.Eachlineinthedatabaserepresentsasingleaircraftflightandcontainsaircraftidentifiers(aircrafttype,enginetype);origin/destinationinformation(airport,country);andpayload,range,andfuelburnbyphaseofflight.3TheCODis constructed fromEuroco ntrol's(EC)EnhancedTrafficFligh tManagementSystem(ETFMS),FAA'sEnhancedTrafficManagementSystem(ETMS),andInternationalOfficialAirlineGuide(I OAG)data.ETFMSandETMSaccountforupto~75%ofglobalcommercialoperations,whileETMSalonecovers~55%,andtheremainderofworldwideoperationsarecoveredbyIOAGyear2006schedule.Payloadisnotdirectlyreportedonaflight-by-flightbasis,thereforeassumptionswereusedtocalculatepayloadintheCOD.Equation4describestheassumptionsusedtopopulatetheCODpayloaddata.Passengerpayloadiscomputedbymultiplyingthepassengerpayloadfactorbythenumberofseatsandaveragepassengerweight.Cargopayloadiscomputedbymultiplyingthecargoloadfactorbytheavailablecargocapacity.Specifically,IorDspecifiesinternationalordomestic;Wpistheaveragepassengerweight(91kg);PLFisthepassengerloadfactor;CLF(BEL)isthecargoloadfactoronpassengerflights;andCLF(FRT)isthecargoloadfactoronfreightflights.Equation4Foraspe cif icaircrafttype,Wp,me dianseats,andmedia nmaxstructural payloadare constant.PLFandCLFvarybyregionandcategory(IorD).Becausethereare6regions,2categories,and2loadfactors(PLFandCLF),payloadisaggregatedinto24binsforeachaircraft(MODTFRapporteurs,2008).2.4.2 BureauofTransportationStatistics(BTS)Form41T-100(UnitedStates)BecauseofthehighlevelofpayloadaggregationintheCOD,asecondoperationaldatabasewasobtain ed,butislimitedtoUnited Statesoperations.TheBureauo fTransportationStatistics(BTS)Form41Schedul eT-100U. S.all-carrier(internationa landdomestic) 2 InternationalCivilAviationOrganization,CommitteeonAviationEnvironmentalProtection,ModellingandDatabasesGroup's2006CommonOperationsDatabase;JointlymaintainedbyU.S.DOT'sVolpeCenter,onbehalfoftheFederalAviationAdministration,andEUROCONTROL'sExperimentalCenter;CAEP/9Version. 3 Columns: DATE;DEP_APT_CODE;ARR_APT_CODE;DEP_CNTRY_CODE;ARR_CNTRY_CODE;AIRCRAFT_TYPE;ENGINE_TYPE;AIRCRAFT_ROLE;TRAJECTORY_TYPE;DE P_BELOW10K_DISTANCE;ABOVE10K_DISTANCE;ARR_BELOW10K_DISTANCE;TO TAL_DISTANCE;DEP_BELOW10K_FUELBURN;ABOVE10K_ FUELBURN;ARR_BELOW10K_FUELBURN;TOTAL_FUELBURN;PAYLOAD;SEATS_MEDIAN;OEW_MEDIAN;MTOW_MEDIAN;FUEL_CAPACITY_MEDIAN;MSP_MEDIAN !

Payload

I/D (PAX)=[PLF I/D *Median_Seats*W P ]+[CLF(BEL) I/D P

Payload

I/D (Cargo)=CLF(FRT) I/D *Median_Max_Structure_Payload

-23- segmentdataforthefullyear20064providedbaseyearoperationaldata.Datawasfilteredtoexcludecargoservice,militaryflights,repositioningflights(i.e.departuresperformedwithzeropassengersreported),andsightseeing(i.e.departuresperformedwhoseoriginanddestinationwerethesameairport).Eachentryinthedatabaseisamonthlyaggregationofauniqueaircrafttype,operator,andorigin-destination(OD)pair.2.5 AircraftPerformanceModels2.5.1 Piano-5Piano-5isanintegratedtoolforanalyzingandcomparingexistingorprojectedcommercialaircraft.Itconsistsofa250+aircraftdatabase,aflightsimulationmodule,andanaircraftredesigntool.Piano'saircraftdatabase(AppendixB:AircraftList)containsexistingtypesaswellasprojecteddevelopments.Eachaircrafthasbeencalibratedaccordingtothebestdataavailablefrombothpri vateandp ublicsou rces.Piano'smodelsarec onstructedindependentlyonthebasisofgenerally available, non-confidentialinformat ionanddescriptions,andarenotin anywayendor sedbythe manufac turers orbyanyotherorganization(Lissys,Piano-5,2010).Figure5:ScreenshotofPiano5interface(Lissys,Piano-5,2010)Piano5allowsrealisticmanipulationofmostdesignparameters(Figure5)byredesigningtheaircraftusinguserspecifiedcriteria.Forexample,theusercouldopttore-enginetheaircraftwithanupdatedTSFCandnochangetotheairframe,ortheusercouldupdateengineTSFCandreoptimizetheaircraft(i.e.designanewaircraft)forthesameoranewmission.Thiscapabilitywillallowrealisticevaluationofperformancemetricsundertheinfluenceofnewtechnology.WhilePiano'smo delsandredesigncapab ilitieshavenotbee nvalidatedbyanymanufacturer,itisthebestavailablesecondarydatasource. 4 http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=309&DB_Short_Name=Air%20Carriers

-24- 2.5.2 Piano-XPiano-XissimilartoPiano5withouttheaircraftredesigntool.Piano-Xcontainsanaircraftdatabase(AppendixB:AircraftList)andflightsimulationmodule.Figure6:ScreenshotofPiano-XinterfacePiano-Xallowstheinputofspeedpreference,altitudeconstraints,reserve,diversion,andtaxiin/outtimesinordertoprovidearealisticsimulation.Multipleoutputformatsarepossible,includingblockfuel summaries(fuel,time, CO2,NOx,et c)anddetailed flightprofiles(time,altitude, andfuelburnatstepsal ongthemission).

Chapter3: Metrics,Parameters,andCategoriesTherearetwoa pproachestoq uantifyingaircraftfuelefficiencyperformance:(1)fullmissionmetricsand(2)instantaneousmetrics.Fullmissionmetricsencompassallflightphasesandrequirealargesetofassumptionstodefineinthecontextofacertificationstandard.Asubsetofthefullmissionapproachistosimplifymeasurementsbyexcludingcertainphasesoffli ght.Theinstantaneou sapproa chcaneithermeasurefuelefficiencyperformanceatonepointormultiplepoints.Usingtheformi dentifiedi nEquation2,f uelefficiencymetricsare definedasFuel_Energy/Output.Anymeasureoftransportationoutputmustincludesomemeasureofdistancetraveled.Therefore,forthepurposeofthisresearch,outputisdefinedasrange.Becausethereisnoma thematicaldiffer encebetw eendefininganoutputterminthedenominatorofthemetricor onthec orrelating parameter,otherformsof output(e.g.payloadorpayloadproxy)areincludedinthecorrelatingparameter.Inthis chapter,ful lmissionandinstantaneou sfuelefficiencymetricsaredefined.Inaddition,rangeparameters,a ndpayloadproxiesaredetailed.Sp eedisexaminedfo rinclusioninametricorCP,andalistofaircraftandcategoriesarepresented.3.1 MissionandInstantaneousPerformanceMetrics3.1.1 FullMissionTheperformanceoftheaircraftismeasuredfortheentiremission.Thefullmission(FM)metricisdefinedinEquation5asBlockFueldividedbymissionrange.€

FM=

Block_Fuel

Range

-26- Figure7:MissionandReserveAssumptionSchematic(ICCAIA,2010)Fullmissiondefinitionrequiresmanyassumptionswithregardtopayload,range,climbschedules,etc.Asi nglephaseofthebl ockfuelmissionc ontains manysub-phases.Forexample,taxiconsistsofstart-up,enginewarm-up,overcomingstiction,accelerationtotaxispeeds,turns,stops,andre-starts(ICCAIA,Sept2010).Eachtaxiphasevariesbygroundcongestionandairportgeography(weatherandterrain).Calculationofblockfuelalsorequiresthedefinitionofreserves(Figure7),whichtypicallyvarybyoperatorandcrew.Whilereservefuelisnotcountedas"fuelburned"duringthecalculationofblockfuel,itisimportanttoincludeduetotheextraweightcarriedduringthemission.Reservefuelisdefinedbyoperationalrequirements(FAR121orEU-OPS1.255)andismandatedtocopewithdeviationsbetweenpredictedflightplanandactualflight.Byit'snature,blockfuelisdrivenheavilybyoperationalconstraints(noiseontakeoff,taxitimes,missionrulesbyODpair,overwaterroutes,etc).Whileblockfuelispredictablebasedonmanuf acturermodels,itsaccuracyisafunct ionoftheappropriateoperation alassumptionsofhowtheaircraftwil lbef lown(ICCAIA,Sept2010).To beused inacertificationstandard,theseassumptionswouldneedtobefullydefined.3.1.2 SimplifiedMissionSimplifiedmissionsareasubsetoffullmissions,andexcludesomephasesofflight.Forexample,inFigure7"StillAirRange"isasimplifiedmissionbecauseitexcludesthetaxi,takeoff,approach,andlandphases.Simplifiedmissionmeasurementsattempttolimitthenumberofassumptionsrequiredtodefinetheevaluationconditionforthecertificationrequirement.Simplifiedmissionmetricsalsoattempttolimittheinfluenceofoperationallydrivenphasesofflight.CAEP9_WG3_CO2-2_WPXX

Page 2 of 11

200 nmi

Climb

Cruise* @ LRC

Approach and land

30 Min. hold @ 1,500 ft

Mission

Reserves

Defined by operational rule jurisdiction

e.g. FAR International Mission Rules

Still air range

Flight time & fuelBlock time & fuel

Numerous assumptions/definitions required to sufficiently describe a "mission" for the purposes of calculating performance:

Aircraft definition, performance level, payload level, route (ordistance) definition, airport definition, operational rule jurisdiction, operational techniques, environmental factors, fuel quality, etc.

Fig 1. Mission Profile Descriptor -illustration of the mission elements typically used for the calculation of aircraft performance (fuel

burn, payload capability, range capability)

Accelerate to climb speed

Climb to 10,000 ft at 250kts

Climboutand acceler ate

to 1,500 ft & 250kts

Taxi out (xx min.)

Takeoff to 35 ft

Climb

Descend and decelerate

to 10,000 ft and 250 kts

Approach and land

Taxi in (yymin. from reserves)

Fuel for 10% flight time @

LRC Mach, final alt. and wt.

Missed approach

Descend

Descend to 1,500 ft at 250kts

Mission Profile & Fuel Requirements Descriptor

Cruise (w/Steps)

* e.g. defined as >zz% of Alternate Distance

-27- 3.1.3 Instantaneous5SpecificAirRange(SAR)6,is anins tantaneousmetricthatmeasurestheaircraftfuelefficiencyperformanceatasinglepointintime.Analogoustoinstantaneous'miles-per-gallon'forautomobiles,SARrepresentstheincrementalairdistanceanaircraftcantravelforaunitamountoffuelataparticularflightcondition.Equation6Thisinstantaneo usmeasureofaircraftfueleffi ciencyisawell -knownandwidelyusedperformanceindicatorinindustrytoday.Forinstance,apurchaseagreementbetweentheAirbusIndustryand USAirways,publiclyavailablefromtheSecurityExchangeandCommission'sdatabase(SEC,1999),specifiesSARvaluesguaranteedbythemanufacturer.Figure8:ExamplePurchaseAgreementPerformanceGuarantee(SEC,1999)SARcanbederivedfromfirstprinciples.Aircraftrange(R)isitsvelocitymultipliedbythetimealoft.Timealoftisequaltothecarriedfueldividedbytherateoffuelburn,whichisalsoequaltothrustrequired(Treq)multipliedbyspecificfuelconsumption(TSFC).Asfuelisburnedtheaircraftweightchanges,thuschangingdragandTreq,timealoft,andR(Raymer,2006).Thiscanbeexpressedinequationform,€

dR dW V -T(TSFC) V

D(TSFC)

VLD -W(TSFC) SAR= V TSFC L D 1 W

Equation8whereVistrueairspeed,TSFCisthrustspecificfuelconsumption,Lislift,Disdrag,andWistotalaircraftweightatthetimeofcalculation.Duetoitssimpledefinition,SARcanbecalculated(Equation6)bydividingtrueairspeed(measuredinkm/s)byfuelflow 5 Section partially appe ars in: FAA/PARTNER. (September 2010). Project 30 Metric Recom mendation . Geneva: International Civil Aviation Organization. 6 Specific Air Range is actually -dR/dW; the negative sign in the derivation indicates fuel burn (lost weight) !

SAR= dR "dW f V

FuelFlow

measuredin km kg

The nautical miles per pound of fuel at an A320 Aircraft gross weight of 145,000 lb at a pressure altitude of 37,000 ft in ISA+10(degree)C conditions at a true Mach number of 0.78 will be not less than a guaranteed value of 0.0839 nm/lb. !

-28- (measuredinkg/s).L/Dand,t oalesser extent, TSF Car efunctions ofaltitudeandatmosphericconditions.Thus,whenmeasuredinsteady-levelconditions,SARdependsonlyonaircr aftweight,altitude,airspeed,ambienttemperatureandsomeoperationalassumptionssuchaselectricalpowerextraction,operationoftheairconditioningsystem,andaircraftcenterofgravitylocationintermsofthemeanaerodynamicchord.ThismakesSARrelativelysimpleincomparisontofull-missionmetricsin3.1.1FullMission.Inaddition,SARencapsulatesfundamentalparametersthatdirectlyinfluenceairplanefuelefficiencyincluding:propulsionsystemefficiency(V/TSFC),aerodynamicefficiency(L/D),andairplane weight(1/W).Thefirstterm(V/TSFC)ofEquation8isequivalentto(T*V)/(FuelFlow*HeatingValue)foragivenfueltype,whichdenotestheratioofthetimerateofworkdonetothetimerateofchemicalenergyinput,alsoknownastheoverallefficiencyofapropulsionsystem.Thesecondterm(L/D)ofEquation8isthelift-to-dragratio,awell-knownparameterthatrepresentsaerodynamicefficiencyofanairplane.Thelasttermisairplaneweightattheevaluationcondition,whichincludesairframeweight.Therefore,SARisabletocapturetheprogressionofCO2reductiontech nologiese ncompassingth eareasofaerodynamics, propulsionsystem,andairframeweightreduction.WhilethesefundamentalparametersareincludedinEquation8,theequivalentdefinitionofSARasV/FuelFlow(Equation6)isanticipatedtoallowtheevaluationofSAReitherbydemonstrationthroughflighttestsornumericanalysis.Numericalanalysisistypicallydoneusinganairplaneperformancemodelcalibratedandvalidatedthroughanalysesandflighttests.Althoughnotrequiredbyairworthinessauthorities,manufacturersconductanumberofflighttestsd uringthecertificatio nprocesstovalidatecruiseperfor manceforthedevelopmentofflightmanualsthataresuppliedtotheoperators.Duetothiscommonuse,itisexpectedthatSARwouldberelativelyeasytocertifycomparedtomission-basedmetrics,whichrequiren umerousparameterstob edefinedandagreedupon,byaregulatoryauthorityaswellascomplexmethodologytoimplementwithinthecertificationprocess.AlthoughSARisapoint-basedmetricmeasuredforasingleaircraft,thefleetfuelburnperformancecommunicatedtothepubliccouldbecalculatedbasedoncertificationdata.AlthoughSARiswidelyusedintheaeronauticalengineeringcommunity,thereciprocalofSAR(1/SAR)isusedinthisresearchfortworeasons.First,thereisageneralconsensusamongstregulatorybod iesthataCO2metricshouldbe inaform ofCO2e missions normalizedbyaparameteroraproductofparameters.ThereciprocalofSARrepresentstheamountoffuelrequiredperaunitairdistance,andthusisconsistentwiththisgeneralmetricform(i.e.fuelburnperunitofairtransportationoutput).Secondly,byusing1/SARalongwiththeappropriateCP,areductioninthemetricindicatesanimprovement,whichisconsistentwiththenatureofmission-basedmetrics.Thisconsistentprinciplemetricformfacilitatesthecommonassessmentof1/SARandblockfuel metric s,sinceboth canbeinvestigatedforimprovementtrendsinthesamedirection.

3.2 MeasuresofOutputAmajorconsiderationinthedefinitionofcandidatefuelefficiencymetricsishowtodefine"Output"inEquation1.Thepurposeofairtransportationistotransportpeopleandgoodsoversomedis tanceinsome amountoftime.Thus,air transportat ionoutputcan beconstructedusingoneoracombinationofthefollowinghigh-levelparameters:(1) Measureofdistancetraveled(2) Measure(orproxy)ofwhatistransported(3) Measureofspeed(ortime)3.2.1 MeasureofdistancetraveledAnymeasureoftransportationproductivitymustincludesomemeasure ofdistancetraveled.Therearetwowaystoreferencedistance:first,absolutedistanceintermsofmilesorkilometers;orsecond,arelativedistancethatisdefinedasafractionofsomemeasureofaircraftrangecapability.Figure9:NotionalPayload-RangeDiagramFigure9depictsanotionalpayload-rangediagram.Theboundaryofthediagramislimitedbycha racteristicsoftheaircraft(e.g.MaximumStruct uralPayloa d(MSP),max landingweight,MTOW,andfuelcapacity).Theregioninsideoftheboundaryrepresentsfeasiblecombinationsofpayloadandr ange(miss ions).Acontourinsideofthe boundaryandparallelwiththeMTOWli mitedboundaryrepresentslinesofconstanttakeoffweight(TOW)(i.e.allcombinationsofpayloadandrangeonagivenlinecanbeachievedbyasingleTOW).InordertoachieveadifferentmissionatthesameTOW,theproportionofpayloadandfuelmustbechanged.

?"781$+",*-".$ &'()*#+,#-+(*.$(.##/$0)+1#2)'34.#

-30- R1isacommonlyusedreferencedistance.ItistheintersectionoftheMSPlimitedlineandtheMTOW(o rmaxlandingweight)limitedline.R1representsthemaximumrangeanaircraftcanflytheMSP.Forthisreason,R1servesinthisresearchasaproxyforaircraftdesignrange.R1aisdepictedhereforcompleteness.Notallaircraftaremaxlandingweightlimitedontheirpayload-rangeboundaryasthisonlyhappenswhenthereservefuelforlong-rangemissionsisverylarge.Inthis research,r elativedistancemea surementsarepreferredoverabsolutedistancemeasurementsduetodesigndifferencesinherenttotheaircraftfleet.Thereisafactorof15differencebetweentheshortestandlongestR1rangeamongstaircraftinthisstudy(Piano-X).Thus,fractionsofR1rangeareused,asitisconvenienttocompareaircraftonasimilarrelativebasis.3.2.2 MeasureofPayload(orProxy)EachaircraftcanbedecomposedintoafewweightcategoriesasshowninFigure10.Figure10:DefinitionofWeightBasedParameters(BonnefoyY.M.,2011)TheManufact uringEmptyWeight(MEW)istheai rcraftweig htasitleavesthemanufacturingfacility.Th isincludesstructuralweight,avionics, electricalsystems,pneumatics,hydrologicsystems,andothers.MEWisnotcertifiedandisnotstandardacrossaircraftmanufacturers. Oncetheaircraftisdeliveredtoanoperatoritisoutfittedwithoperationalequipmentsuchasseats,servicecarts,etc.TheOperatorEmptyWeight(OEW)isnotcertifiedanddoesnothaveastandarddefinitionacrossoperators.ThisfullyoutfittedaircraftcanthenflyapayloaduptoMaximumStructuralPayload(MSP).Theoperatingaircraftweigh twithMSPonboard isMaximumZeroFuelWeight(MZFW),whichisacertifiedparameter.Ultimately,MaximumTakeoffWeight(MTOW)limitsthetotalaircraftweight,andthisparameterlimitstheamountoffuelwithMSPonboard.

Table1:CertificationStatusofAircraftWeightParameters(BonnefoyY.M.,2011)AvailabilityofCertifiedMetricsAcronymMetricAircraftManufacturerCertificationOperatorCertificationMTWMaximumtaxiweightCertifiedN/AMTOWMaximumtakeoffweightCertifiedN/AMLWMaximumlandingweightCertifiedN/AMZFWMaximumzerofuelweightCertifiedN/AOEWOperatingemptyweightNotCertifiedCertified(inAirplaneFlightManual)Max.PayloadMaximumPayloadNotCertifiedCertified(inAirplaneFlightManual)MEWManufacturer'semptyweightNotCertifiedN/AWhilesomeweightparametersarenotcertified(Table1)atthemanufacturerstage,theyarecertifiedbytheoperatorintheaircraftflightmanualinordertoinformpilotsduringflightplanning. Parametersthatarenot certifiedbythemanufacturerdono thaveconsistentdefinitionsacrossmanufacturersoroperators.Thereisnocertifiedpayloadparameter.ThedefinitionofMSPisMZFW-OEW,whichisnotcertifiedasOEWvariesacrossmanufacturersandoperators.Othermeasuresof'WhatisTransported'includefloorarea,volume,numberofseats,orsomecombinationofthese.Floorareawaseliminatedfromconsiderationduetothelackofastandarddefinitionacrossmanufacturersandthepotentialgamingofastandardbasedonfloorarea(i.e .increasesin" non-productive"floorareainorder tobeatthestandard).Volumewaseliminatedfromconsiderationforthissamereason.Numberofseatsisahighlydependantonoperationalconsiderations.Forexample,aB737-700canbeoutfittedwithastandard~126-seatconfiguration,oritcanbeoutfittedwithanallbusinessclassconfiguration.Themanufacturerhasnocontroloverthenumberofseatsthatareoutfittedbytheoperator;thus,inthisexamplethereisalargedifferencebetweenthecertificationvalueofthemetricandthe"day-to-day"valueofthemetric.Forthesereasons,theparametersofinteresttothisresearchareMTOW,MZFW,andOEW(whilenotcertified, istheon lyavailableparametertobeu sedasa proxytoca lculatepayload).3.2.3 ConsiderationsforIncludingSpeedintheMetricThereareconsequencesforincludingspeedinaproposedmetric,andtherearepotentialimplicationsfornotincludinganymeasureofspeed.First,BlockFuelandSpeedarecoupledattheoperationallevelanddesignlevel.Thecruisespeedatwhichairlineschoosetoflytheaircraft(operational)infl uencesfuelburn.Fromadesigns tandpoint,aircraft

-32- manufacturerschooseacruisespeedbas edonthevehiclemiss ions pecifications(influencingfuelburn).Blockfuelenergycanbereducedbyasignificantamountincurrentaircraftbyusingaspeedlessthancurrentoperationalspeeds(BonnefoyP.A.,2010).Further,researchhasshownthattherearesignificantfuelburnbenefitsfromdesigningaircraftwithslightlylowerdesignspeeds(MITN+3ResearchTeam,April2010).Ifspeedwereincludeddirectlyinthemetricdenominator,aircraftdesignssimilartocurrentvehicleswouldbedriventohigherspeedsinordertoachievebettermetricscores,potentiallyatthecostofincreasedactualfuelburn.ThissuggeststhatincludingspeedinaCO2metricmayresultinnegativeunintendedconsequences.Theinclusionofthespeedinthemetricalsoimplicitlyassumesarelativeweightbetween"timerelatedcosts"drivenbyspeedvs."fuelrelatedcosts"drivenbyfuelburn.ThisrelativeweightissimilartotheCostIndexusedbyairlines,onanoperationalbasis,toadjustcruisespeedbasedontherelativecostoffuelandlabor.Whilethisworkswellforoperationaladjustments(basedonreal-timechangesoffuelvs.laborcosts),theinclusionofaspeedparameterintheaircraftcer tific ationmetric wouldrequireforecastingac ostindex.However,theratiooffueltolaborcosts(i.e.costindex)hasnotbeenconstantovertimeasshowinFigure11.Figure11:HistoricalEvolutionofLaborCostsandFuelCosts(AirTransportAssociationofAmerica,2009)Clearly,speedisafac torthat significantlyinfluencesaircraftfuelburn.Becauseofitssignificance,speedisaparameterthatcannotbeignoredintheprocessofdeterminingacertificationrequirementregulatingaircraftCO2emissions.However,itislikelythatspeedismostappropriatelydealtwithasameasurementconditioninthecertificationprocess.

-33- 3.3 AircraftCategoriesandAircraftListAnobjectiveofthisresearchistoidentifyperformanceforawidevarietyofaircraft.Aircraftinthisstudyspansizesfrom4,500kgto600,000kgand6seatsto800seats.AnaircraftlistisincludedinAppendixB:AircraftList.Broadclassificationschemeswereusedtoplacetheaircraftmodelsintogeneralcategoriesbasedongeneraltypeandcapability.Groupingaircraftintobinsfacilitatedobservationofhowmetricstreateddifferentclassesofaircraft.SeveraldifferentcategorizationswereusedinthisresearchandarelistedinTable2alongwiththeassociatedabbreviations.Table2:AircraftCategoriesCategorization1Categorization2Turboprop(TP)Turboprop(TP)BusinessJet(BJ)BusinessJet(BJ)RegionalJet(RJ)RegionalJet(RJ)SingleAisle(SA)SmallTwinAisle(STA)NarrowBody(NB)LargeTwinAisle(LTA)LargeQuad(LQ)WideBody(WB)

Chapter4: TypicalAircraftOperationsInordertodefineastandardthatisrepresentativeofthewayaircraftareoperated,thestandardshouldbebasedonevaluationconditionsthatarerepresentativeoftypicalaircraftoperations.Thedefinitionoftypic alaircraft operationscanbeinformedbyeval uatingoperationaldatabasestounderstandthewaysinwhichaircraftareoperatedtoday.Aircraftaredesignedwiththeabilitytoflyadiversityofmissionspartlyduetooperatornetworkdemandsandtoa lsotoprovidefl exibili tyforpo tentialmultipleo wnersthroughouttheaircraft'sservicelifetime.Figure12:2006Boeing737-800Operations[DataSource:BTSForm41T-100]Whilemostofthemarketingfocusandavailablepublisheddataisusuallyconcernedwithpeakperformance,mostoperationsdonotnormallytakeplaceatthesemaximumpoints(Figure12).Itistheoperationalflexibilityofaircraftthatmakethemsuitedforahostofoff-designmissions.Atthesametime,theperformancefiguresrealizedatoneconditionmaynotapplyatanother(ICCAIA,2010).Forthisreason,typicalaircraftoperationswillbeassessedinordertoinformthedefinitionofmissionandinstantaneousevaluationconditions.4.1 PayloadTheBTSdatabaseisusedtoexaminedetailedpayloadfrequenciesforallflightsoriginatingorterminatingintheUnitedStates.Asstatedin2.3,BTSForm41T-100databaseincludesdomesticandinternationalcarrierswithoriginsordeparturesintheUnitedStates.BTSpayloadincludespassengerweight,bellyfreight,andmail.Thedataisaggregatedinentriesaccordingto:oneentrypermonthforauniqueaircrafttype,carrier,O-Dpair.Thisisthehighestfidelitypayloaddataavailablefordetailedexamination.Duetothefactthatitisslightlyaggregatedthereissomeregressiontothemeanascomparedwithatruepayloaddistribution.

-36- Figure13:2006USAllCarrierPayloadFrequenciesbyAircraftCategory[DataSource:BTSForm41T-100]

-37- Asseen inFigure13,al lpayloadfreq uenciesarehaveasinglemode,withanaveragefrequencybetween49%to55 %of MSP.The chartisorde redfromtop tobottomby(generally)shorter-rangeaircrafttolonger-rangeaircraft.4.2 RangeTheBTSdatabasewasusedtoassessrangefrequenciesbyaircrafttypeandcategory.AnexamplerangefrequencyisdepictedinFigure14foraBoeing737-800.Figure14:2006Boeing737-800RangeFrequency[DataSource:BTSForm41T-100]TheBoeing737-800(withwinglets)hasanR1rangeat4,009km(Piano-X).AscanbeseeninFigure14,approximately97%ofoperationsoccurbelowR1range.Thedistributionhasapeaknear40%ofR1range.AbsoluterangefrequencyforthetotalfleetisshowninFigure15.

-38- Figure15:2006TotalFleetUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]Mostfleetmissionsoccurbelow5,000kmmissionrange.Thisisduetothefactthatallintra-USmissionsarelessthanthisdistance.Trans-AtlanticflightsfromtheNortheasternUnitedStatestoWesternEuropeareapproximately5,000km(BOStoLHR,5,230km).Theslightincreaseinfrequencyonmissionsofapproximately 6,000km+ isduetotrans-AtlanticflightsfromSoutheasternandMid/Mid-WesternUnitedStatestoWesternEurope,allofUStoMid/EasternEurope,andtrans-Pacificflights.Rangefrequenciesbyaircraftcategorywerecomputedandtheresultswereaggregatedinto500binsbasedo nfractionofR1rangeforeachaircrafttype.Thechartswithrelativedistances(i.e.percentofR1)presentedinthissectionincludedistancesuptoR1range.Onafleet-widebasis,1.7%ofoperationsoccurpastR1range(BTS,Piano-X).Figure16:2006NarrowBodyAircraftUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]

!"##"$%&'(%)*&+,-.&/0-1*2&$3&45*2(6$%#&

-39- AsseeninFigure16,narrowbodyaircraftoperateamajorityoftheirflightsatrangesbelow50%ofR1range.Therangefrequencyhasameanof41%ofR1range.Figure17:2006WideBodyAircraftUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]Asseen inFigure17,widebodya ircrafthaveameanof 0.61,withmoreoperationsoccurringneartheR1rangethanthenarrowbodies.Widebodyaircrafttendtoflylonger-rangemissions(i.e.mostlyservethemajorintercontinentalmarkets),thusunlikeanarrowbodyaircraftsuchastheBoeing737-800(Figure14)whichservesmainlyintra-continentalmarkets,thewidebodiesoperatemoreoftheirmissionsatamuchhigherpercentageofR1range.Thisdifferen cecanbesee nmoreexplicitlybycomparing Figure17withthecorrespondingnarrowbodyrangefrequencychart(Figure16).Regionaljets,whichgenerallydescribe50-100seatshort-haulaircraft,becamemuchmorewidelyusedafterairlinederegulationin1978.Onceairtravelbecamemoreaffordableforawiderrangeofpopulation,shortroutesfeedingmajormarketsbecamemorecrucialtoservice.Theshorthaulregionaljetsupplantedthetubro-propontheseroutesduetotheirlongerrangeandfastercruisespeeds(andperceivedsafetybenefitsbyconsumers).TheBAeSystems146wasdesignedtofillthisgapinthemarketshortlyafterderegulation,butwasdesignedwithoutthedesigndiversityinherentinmostcommercialaircraft.Becauseofthis,competitorssuchasBombardier(e.g.CRJ)andEmbraer(e.g.ERJ145)designedlonger-rangeregionaljetscapableofpoint-to-pointservice(ratherthanoperatinginthehubandspokenetwork),whicheventuallycapturedthemarket.

-40- Figure18:April2006RegionalJetUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]Duetothesedesignco nsiderationsandthema rketthattheyserve,regionaljetsareoperatedwithameanfrequencyof39%ofR1(Figure18).Currently,amidcompetitionfromlowcostc arriersonmids izecitypairs,regionalje tsarefacingd ecliningnumber ofdepartures.Figure19:2006TurboPropUSAllCarrierRangeFrequency[DataSource:BTSForm41T-100]Turbopropaircraftcompetewithregionaljetsbyofferinglowerfuelconsumption(buthighermaintenancecosts)andanabilitytotakeofffromshorterrunways.However,theemergenceofregionaljetshaspushedtheturbopropintoveryshort-rangemarkets,asexhibitedbythemeanrangefrequencyat30%ofR1rangeinFigure19.

-41- 4.3 FuelBurnInordertocompleteadetailedexaminationofwherefuelisburnedbypayloadandrange,acombinationofBTSoperationaldataandPiano-Xperformancedatawereused.BTSdatadoesnotcontainfuelburn.However,itdoesincludepayloadandrange(4.2and4.3).FuelconsumptionforeachaircraftflyingaspecificO-DpairiscomputedfromPiano-Xmissionsimulations.Foreachaircrafttype,missionsweresimulatedatfractionsofmaximumstructuralpayload(MSP)andfractionsofR1range(i.e.rangeatthefirstbreakpointinapayloadrangecurve,whichdepictsthepointatwhichthesumofpayloadandfuelarelimitedbyMTOW,andafterwhichpayloadistradedformorerange).Figure20:Piano-XMissionSimulationGridonNotionalPayloadRangeChartInFigure20,acombinationofmissionsweresimulatedat1.0*MSP,0.8*MSP,...0*MSP,and1.0*R1,0.quotesdbs_dbs14.pdfusesText_20