[PDF] Le rang - unicefr



Previous PDF Next PDF







Le rang - unicefr

D´efinition Le rang d’une matrice A est le nombre de lignes non nulles dans sa forme ´echelonn´ee en lignes On le note rgA Par exemple la matrice suivante A se r´eduit en sa forme ´echelonn´ee en lignes par les pivotages A = 1 −3 6 2 2 −5 10 3 3 −8 17 4 −−−−−−−−→L 2← −2 1 L 3←L −3L 1 1 −3 6 2



Rang dune matrice Cours et exercices - SiteWcom

2 PCSI Année 2014-2015 Rang d'une matrice: cours et exercices 1er juin 2015 II Matrices échelonnées Définition 2 Soit A 2 Mnp (K) La matrice A est chelonnéé e (en lignes) si : toute ligne non nulle de A ommencce avec strictement plus de zéros que la ligne prdenteécé ; en-dessous d'une ligne nulle, on ne eutp trouver qu'une ligne nulle



Rang dune matrice - maquisdoc

MPSI-Éléments de cours Rang d'une matrice 28 février 2020 Proposition Soit A2M p;q(K) et Q2GL q(K) : rg(AQ) = rg(A) Preuve La démonstration est assez di érente de la précédente, car la multiplication à droite par Qn'opère pas



D´edou Octobre 2010 - unicefr

Rang d’une matrice Par d´efinition le rang d’une matrice est celui du syst`eme homog`ene associ´e Exemple La matrice suivante a pour rang 3 (le syst`eme correspondant est facile) : 8 2 4 6 0 0 2 4 0 3 5 7 Exo 3 Quel est le rang de la matrice suivante : 4 0 2 2 2 3 4 1 6 0 3 3



II Noyau, image et rang d’une matrice

2 2 Rang d’une matrice On a déjà défini le rang d’un système linéaire, le rang d’une famille de vecteurs et le rang d’une application linéaire On définit maintenant le rang d’une matrice Soit A 2Mn,p(K) On appelle rang de A le rang de la famille (C1, ,Cp) des colonnes de A On note : rg A ˘rg(C1, ,Cp) ˘dim(Vect(C1



Rang d’une matrice, retour aux systµemes lin¶eaires

1 1 RANG D’UNE MATRICE RANG D’UN SYSTEME LINµ EAIRE ¶ 3 Lemme 1 1 7 Le rang des lignes du systµeme homogµene AX = 0 est ¶egal au nombre de lignes non nulles du systµeme ¶echelonn¶e ¶equivalent EX = 0 obtenu par la m¶ethode du pivot de Gauss



Matrices et applications linéaires

Le rang d’une matrice échelonnée est très simple à calculer Proposition 2 Le rang d’une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles Par exemple, dans la matrice échelonnée donnée en exemple ci-dessus, 4 colonnes sur 6 sont non nulles, donc le rang de cette matrice est 4



I Théorie du rang COMPLEMENTS SUR LES MATRICESI 1 Image et

Théorème 3 : Lien avec le rang d’une application linéaire ••Le rang de A est aussi le rang de : Théorème 4 : Rang de la transposée (Admis provisoirement) 3Rang et matrices extraites Une matrice extraite de A est une matrice obtenue en supprimant certaines lignes et certaines colonnes de A Définition 2 Exemple 1 — La matrice 1 8

[PDF] rang d'une matrice definition

[PDF] cours moment d'une force

[PDF] exercice physique moment d'une force

[PDF] exercice moment d'une force bac pro

[PDF] calcul moment force

[PDF] exercices sur le moment d'une force pdf

[PDF] exercice corrigé bras de levier

[PDF] exercices moment d'une force cap

[PDF] initiation volley ball+exercices

[PDF] rang d'une matrice 2x2

[PDF] moment de force formule

[PDF] fiche de situation familiale crous rattachement fiscal comment remplir

[PDF] modele fiche situation familiale

[PDF] fiche de situation familiale exemple

[PDF] couple moment

L1 MASS : Alg`ebre Lin´eaireCours 31 janvier 2006

Le rang

On rappelle une d´efinition du cours pr´ec´edent : D´efinition.Une matriceBest dite´echelonn´ee en lignessi - chaque ligne non nulle deBcommence avec strictement plus de 0 que la ligne pr´ec´edente, et - les lignes nulles (ne contenant que des 0) deBviennent en bas apr`es les lignes non nulles.

Toute matriceApeut se r´eduire `a une matrice ´echelonn´ee en lignesBpar une suite d"op´erations

´el´ementaires sur les lignes. On appelleBlaforme ´echelonn´ee en lignesdeA. Une des concepts fondamentaux dans l"alg`ebre lin´eaire est lerangd"une matrice. Il admet de plusieurs d´efinitions ´equivalentes. En voici la premi`ere.

D´efinition.Lerangd"une matriceAest le nombre de lignes non nulles dans sa forme ´echelonn´ee

en lignes. On le note rgA.

Par exemple la matrice suivanteAse r´eduit en sa forme ´echelonn´ee en lignes par les pivotages

A=( (1-3 6 2

2-5 10 3

3-8 17 4)

L2←L2-2L1--------→L

3←L3-3L1(

(1-3 6 2

0 1-2-1

0 1-1-2)

L3←L3-L2-------→(

(1-3 6 2

0 1-2-1

0 0 1-1)

Donc on a rgA= 3. Pour la matrice suivante

C=( (1 3 2 1 4 1

0 1-1)

L2←L2-L1-------→(

(1 3 2 0 1-1

0 1-1)

L3←L3-L2-------→(

(1 3 2 0 1-1

0 0 0)

on a rgC= 2.

Th´eor`eme 1.Pour toute matriceAon a

Id´ee de la preuve.En r´eduisant la matriceAen une matrice ´echelonn´ee en lignes similaire `a celle-ci

((13 0 4 5

021 3 8

0 0 072

0 0 0 0 0)

lespivots(les premiers coefficients non nuls des lignes non nulles) sont danslignes distincteset dans descolonnes distinctes. Donc on a

Le nombre de pivots est aussi le nombre de lignes non nulles de la forme ´echelonn´ee deA, d"o`u

nombre de pivots = rgA.

La matrice des coefficients

On peut associer une matrice `a chaque membre d"un syst`eme lin´eaire. Pour le syst`eme ?x-3y+ 6z+ 2w=-1,

2x-5y+ 10z+ 3w= 0,

3x-8y+ 17z+ 4w= 1,

on a des matrices A=( (1-3 6 2

2-5 10 3

3-8 17 4)

,b=( (-1 0 1) avecAlamatrice des coefficientsregroupant les coefficients des variables du membre de gauche du syst`eme, et le vecteur colonnebcontient le membre de droite. Quand on met les deux ensemble, on a lamatrice augment´eequ"on a d´ej`a vue

A=?A??b?=(

(1-3 6 2

2-5 10 3

3-8 17 4?

?????-1 0 1)

Le rang et les syst`emes lin´eaires

On va ´etudier les syst`emes lin´eaires en consid´erant le membre de gauche comme fixe, mais

le membre de droite comme ´eventuellement variable. Dans cette optique, il est convenable de

consid´erer le rang d"un syst`eme lin´eaire comme d´ependant uniquement de son membre de gauche.

D"o`u :

D´efinition.Lerangd"un syst`eme lin´eaire est le rang de sa matrice des coefficientsA.

Par exemple, le rang du syst`eme (‡) est 3, selon les calculs faits sur la page pr´ec´edente.

Pour r´esoudre un syst`eme lin´eaire on fait des op´erations ´el´ementaires et pivotages soit sur

les ´equations, soit sur la matrice augment´ee?A. A la fin, la forme ´echelonn´ee du syst`eme lin´eaire

correspond `a la forme ´echelonn´ee en lignes de?A, et le membre gauche du syst`eme ´echelonn´e

correspond `a la forme ´echelonn´ee en lignes de la matrice des coeffientsA. On en d´eduit :rg

?A= nombre de lignes du syst`eme ´echelonn´e non de la forme 0 = 0.

rgA= nombre de lignes du syst`eme ´echelonn´e non de la forme 0 = 0 ou 0 =caveccnon nul.Ce que nous connaissons sur la solution des syst`emes lin´eaires se traduit par les parties (a) et

(b) du th´eor`eme suivant : Th´eor`eme 2.Consid´erons un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coefficientsA, membre de droiteb, et matrice augment´ee?A=?A??b?. (a)Pour un membre de droitebparticulier, le syst`eme lin´eaire a une solution si et seulement si on argA= rg?A. (b)Quand elles existent, les solutions d´ependent den-rgAparam`etres ind´ependants. La partie (c) se d´eduit du Th´eor`eme 1 ci-dessus.

Quand on r´eduit la matrice augment´ee d"un syst`eme lin´eaire `a sa forme ´echelonn´ee en lignes,

parfois on termine avec une matrice contenant autant de pivots que de lignes dans la partie gauche de la matrice, comme celle-ci :( (13 4 15 024-6

0 0 01?

2 On peut r´esoudre un tel syst`eme ´echelonn´e quelque soit le membre de droite.

Mais parfois on termine avec une matrice augment´ee ´echelonn´ee avec moins de pivots que de

lignes dans la partie gauche, comme celle-ci : (13 4 15 024-6

0 0 0 0?

La derni`ere ligne correspond `a une ´equation de la forme 0 =?, o`u le?d´epend du membre de

droitebdu syst`eme non ´echelonn´e du d´epart. Pour certainsb, le?prend la valeur 0, et le syst`eme

a des solutions. Pour d"autresb, le?est non nul, et le syst`eme n"a pas de solutions. Or quand on a un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coeffi-

cientsA, le nombre de pivots dans la partie gauche de la matrice ´echelonn´ee est rgA, et le nombre

de lignes estm. Donc les deux situations ci-dessus correspondent `a d"abord rgA=m, et ensuite rgA < m. On a donc le th´eor`eme suivant : Th´eor`eme 3.Consid´erons un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coefficientsA, membre de droiteb, et matrice augment´ee?A=?A??b?. (a)Quand on argA=m, le syst`eme lin´eaire a des solutions quelque soit le membre de droite b. (b)Quand on argA < m, le syst`eme lin´eaire a des solutions pour certains membres de droite bmais pas pour tout membre de droite. 3quotesdbs_dbs4.pdfusesText_7