[PDF] Lois de probabilité à densité Loi normale



Previous PDF Next PDF







LOIS DE PROBABILITÉ À DENSITÉ

Chapitre 12 Lois de probabilité à densité Terminale S 1 −1 a 1 2 3b 1 b−a α β b b b b 2 Espérance mathématique Rappel : Cas d’une variable aléatoire qui prend un nombre fini de valeurs E(X) = X k∈X(Ω) kP(X = k) Définition Soit X une variable aléatoire qui admet une densité de probabilité f sur un intervalle [a;b] E(X



Terminale S - Lois de probabilités à densité - Fiche de cours

La loi uniforme sur [a ; b] est la loi de probabilité dont la densité est la fonction f définie par : (f (t)= 1 b−a si t∈(a ;b) f(t)=0 sinon) 2 2 Fonction de répartition et probabilité 1/2 Lois de probabilités à densité – Fiche de cours Mathématiques terminale S obligatoire - Année scolaire 2019/2020



Terminale S - Lois de probabilités à densité - Exercices

Lois de probabilités à densité - Exercices EXERCICES - Densité sans intégrales, variable aléatoire Exercice 1 Dans chacun des cas suivants, dire si la fonction f est une densité pour une loi de probabilité



Lois de probabilité à densité Loi normale

1 LOIS À DENSITÉ • Par la méthode de l’espérance: On choisit au hasard N valeurs de l’abscisse X d’un point M dans [0;1] On calcule la somme S des N valeurs prises par f(X)=



Suite du cours sur les lois à densité - Free

Lois à densité 4 Terminale S EXERCICE 1 La variable aléatoire X égale à la durée d’un atome d’iode 131 avant désintégration suit une loi exponentielle On sait que la probabilité que cette durée de vie soit inférieure à 2 jours est, à 3 10 près, égale à 0,160 1) Calculer, à près, le paramètre de cette loi exponentielle



CHAPITRE 10 lois à densité Exemples de

Dans ce chapitre, on s’intéresse à des lois « continues », c’est-à dire pour lesquelles la variable aléatoire peut prendre toutes les valeurs d’un intervalle, on les appelle lois à densité 1 Loi uniforme sur [a,b] 1 1 Définition Soit [a,b] un intervalle de R On dit que la variable aléatoire X suit une loi



Thème Lois de probabilité à densité

Approfondissement en Terminale S Groupe Mathématique Liaison Lycée-Enseignement Supérieur Cette fiche a été élaborée par des enseignantes et des enseignants des lycées et universités de l’académie de Créteil Thème Lois de probabilité à densité Titre Se familiariser avec les fonctions de densité Présentation



Terminale S - Loi uniforme Loi exponentielle

Loi uniforme Loi exponentielle I) Loi uniforme de probabilité sur [a : b] La loi de probabilité qui admet pour densité la fonction ???? constante égale à ???? ????−???? sur [????; ????], est appelée loi uniforme sur [????; ????] Soit [????; ????] un intervalle inclus dans [????; ????] et ???? une variable aléatoire



Chapitre 13 Terminale S Probabilités continues et Loi normale

Chapitre 13 Terminale S Probabilités continues et Loi normale Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Notion de loi à densité à partir d’exemples Loi à densité sur un intervalle Les exemples étudiés s’appuient sur une expérience aléatoire et un univers associé Ω , muni d’une probabilité

[PDF] iss expérience scientifique

[PDF] méthode expérimentale exemple

[PDF] experience proxima

[PDF] méthode quasi expérimentale

[PDF] aquapad

[PDF] recherche expérimentale exemple

[PDF] exposé sur le gaspillage de l'eau

[PDF] le gaspillage de l'eau texte argumentatif

[PDF] 5 est un diviseur de 65

[PDF] gaspillage de l'eau dans le monde

[PDF] fonctions de plusieurs variables cours

[PDF] fonctions de plusieurs variables exercices corrigés

[PDF] exo7 fonction a plusieurs variables cours

[PDF] continuité d'une fonction ? deux variables exercices corrigés

[PDF] exercice dérivée partielle corrigé

Lois de probabilité à densité Loi normale

DERNIÈRE IMPRESSION LE31 mars 2015 à 14:11

Lois de probabilité à densité

Loi normale

Table des matières

1 Lois à densité2

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Densité de probabilité et espérance mathématique. . . . . . . . . . 2

1.3 Loi uniforme : densité homogène. . . . . . . . . . . . . . . . . . . . 3

1.3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Espérance mathématique. . . . . . . . . . . . . . . . . . . . 3

1.3.3 Application : méthode de Monte-Carlo. . . . . . . . . . . . 4

1.4 Loi exponentielle : loi sans mémoire. . . . . . . . . . . . . . . . . . 5

1.4.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Loi sans mémoire ou sans vieillissement. . . . . . . . . . . . 6

1.4.3 Espérance mathématique. . . . . . . . . . . . . . . . . . . . 6

1.4.4 Un exemple. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.5 Application à la physique. . . . . . . . . . . . . . . . . . . . 7

1.5 Lien entre le discret et le continu. . . . . . . . . . . . . . . . . . . . 9

2 La loi normale9

2.1 Du discret au continu. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 La loi normale centrée réduite. . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 La densité de probabilité de Laplace-Gauss. . . . . . . . . . 9

2.2.2 Loi normale centrée réduite. . . . . . . . . . . . . . . . . . . 10

2.2.3 Calcul de probabilités. . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Espérance et variance. . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Probabilité d"intervalle centré en 0. . . . . . . . . . . . . . . 12

2.3 Loi normale générale. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Loi normale d"espéranceμet d"écart typeσ. . . . . . . . . 13

2.3.2 Influence de l"écart type. . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Approximation normale d"une loi binomiale. . . . . . . . . 15

2.3.4 Théorème Central-Limit (hors programme). . . . . . . . . . 17

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Lois à densité

1.1 Introduction

Lorsque l"on s"intéresse à la durée d"une communication téléphonique, à la durée

de vie d"un composant électronique ou à la température de l"eau d"un lac, la va- riablealéatoireXassociée au temps ou à la température, peut prendre une infinité de valeurs dans un intervalle donné. On dit alors que cette variableX est continue (qui s"oppose à discrète comme c"est le cas par exemple dans la loi binomiale). On ne peut plus parler de probabilité d"événements car les événements élémen- On contourne cette difficulté en associant à la variable X un intervalle deRet en définissant une densité de probabilité.

1.2 Densité de probabilité et espérance mathématique

Définition 1 :On appelledensité de probabilitéd"une variable aléatoire continue X, toute fonctionfcontinue et positive sur un intervalle I ([a;b],[a;+∞[ ouR) telle que :

•P(X?I) =?

(I)f(t)dt=1 •Pour tout intervalle J= [α,β]inclus dans I, on a :P(X?J) =?

αf(t)dt

D"autre part la fonctionFdéfinie par :F(x) =P(X?x)est appelée lafonction de répartitionde la variableX

F(x) =?

x af(t)dtou lima→-∞? x af(t)dt

Remarque :

•Comme la fonctionfest continue et

positive, la probabilitéP(X?I)cor- respond à l"aire sous la courbeCf.

Elle vaut alors 1 u.a.

•La probabilitéP(X?J), avec J=

[α;β], correspond à l"aire du domaine délimité parCf, l"axe des abscisse et les droites d"équationx=αety=β. 1

P(X?J)P(X?I)

1 u.a.

Cf βO •Comme la probabilité que X prenneune valeur isolée est nulle,que l"in- tervalle J soit ouvert ou fermé im- porte peu. Ainsi :

P(X?[α,β]) =P(X?[α,β[)

=P(X?]α,β]) =P(X?]α,β[) 1 F(x)C f x O

PAULMILAN2 TERMINALES

1. LOIS À DENSITÉ

•L"écriture(X?I)est une notation abusive carXn"est pas un nombre, mais la fonction qui associe une issue à un nombre. Elle prolonge la notation déjà utilisée pour des variables discrètes(X=a) Définition 2 :L"espérance mathématique d"une variable aléatoire continue X, de densitéfsur I, est :

E(X) =?

(I)t f(t)dt

1.3 Loi uniforme : densité homogène

1.3.1 Définition

Définition 3 :Une variable aléatoire X suit une loi uniforme dans l"intervalle I= [a,b], aveca?=b, lorsque la densitéfest constante sur cet intervalle. On en déduit alors la fonctionf: f(t) =1 b-a ConséquencePour tout intervalle J= [α,β]inclus dans I, on a alors :

P(X?J) =β-α

b-a=longueur de Jlongueur de I

La probabilité est donc proportionnelle

à la longueur de l"intervalle considéré.

1 b-a aαβbP(X?J) O

1 u.a.

Exemple :Onchoisitunnombreréelauhasarddansl"intervalle[0;5].Onassociequotesdbs_dbs7.pdfusesText_5