[PDF] Chapitre 3 Méthode du simplexe - Université Laval



Previous PDF Next PDF







Simplexe forme Tableau Exercice corrigés x 2 x - x

Simplexe forme Tableau Exercice corrigés Exercice N° 1 : Soit le problème de Programmation linéaire suivant : Max Z = 3x1 + 2x2 x1 + 2x2



Module 06 - Leçon 03 : La méthode du simplexe

du simplexe dont la démarche est la suivante : (voir schéma page suivante) 2 - Application Reprenons l'exemple de la Leçon 2 La résolution par l'algorithme du simplex se déroule selon 8 étapes avant un nouveau passage 1ère étape : Écrire le système sous forme standard



chapitre 3 - Université libre de Bruxelles

MATH-F-306 – 3 Algorithme du Simplexe Exercice 3 1 Exercice 3 1 On consid`ere le poly`edre S de R5 d´efini par les conditions suivantes : x 1 + x 3 + x 5 = 2, 2x 2 + x 3 + x 4 = 4, x 1 + x



Chapitre 3 Méthode du simplexe - Université Laval

6 CHAPITRE 3 MÉTHODE DU SIMPLEXE Onobservequeladernièrelignes’écrit 1=3 x 1 2=3 x 4 z = 2 ()z = 2+1=3 x 1 2=3 x 4: Etantdonnéquelesvariablehors-basevérifiex 1 = x 4 = 0,onaquez = 2 quiestla



2 Méthode du simplexe et son analyse

Méthode du simplexe – forme algébrique • Les contraintes constituent un système de 3 équations comportant 5 variables Exprimons 3 des variables en fonction des 2 autres: u = 30 – 5x – 3y p = 24 – 2x – 3y h = 18 – 1x – 3y z = 0 – 8x – 6y • En fixant x et y nous retrouvons les valeurs des autres variables



1 Programmation linéaire

Corrigé ex 3 : Méthode des variables ajoutées Les deux programmes d’optimisation de cet exercice présentent une difficulté sup-plémentaire pour appliquer la méthode du simplexe : on ne peut pas démarrer le sim-plexe à partir de l’origine (c’est-à-dire à partir du point de coordonnées nulles) car ce





174 EXERCICES SUPPLÉMENTAIRES — PARTIE II

lité de la programmation linéaire, l’algorithme du simplexe révisé, les notions de dualité, et les variantes duales et primales-duales de l’algorithme du simplexe 4 1 Formulation du problème Pour simplifier l’exposé, nous considérons que le problème est formulé sous la forme dite standard, c’est-à-dire min cx sujet à Ax



TD 2 : Simplexe et PLNE

TD 2 : Simplexe et PLNE Exercice 1 2 RCP104 –Optimisation en Informatique Décembre 2014 Soit un problème de minimisation pour lequel on a commencé l’arborescence de recherche d’une solution optimale suivante, où les sommets sont arbitrairement notés A, B, , I :



[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] multiplicateur des dépenses publiques macroéconomie

[PDF] fonction de cobb douglas pdf

[PDF] revenu d'équilibre et revenu de plein emploi

[PDF] fonction cobb douglas ses

[PDF] multiplicateur de depense publique(definition)

[PDF] revenu d'équilibre en économie fermée

Chapitre 3 Méthode du simplexe - Université Laval

Chapitre 3

Méthode du simplexe

Comme toujours, on suppose queAune matrice de formatmnetb2Rm. On notera les colonnes deApar[a1;a2;:::;an]. Aussi, on fera l"hypothèse que le rang de la matriceAest

égal à m.

Selon le chapitre précédent, nous savons que la solution optimale du problème d"optimisation

linéairemaxz=ctx; Ax=b; x0:(3.1) se trouve en un sommet de l"ensemble convexe des solutions admissiblesK=fx0jAx= bg. De plus, nous savons que les sommets sont étroitement reliés aux solutions de base admis- sibles. Concrètement, cela signifie que si on choisit une liste de m variables dites de base B=fxj1;xj2;:::;xjmgassociées à des colonnesfaj1;aj2;:::;ajmgqui forment une base de l"espace-colonne, on peut calculer l"unique solution de bases du système Ax B=b en imposant que les variables hors-basexi= 0pour tous lesi6=j1;j2;:::;jm. SixB0, la

solution est admissible et sera appellée solution de base admissible ou réalisable. D"après le

chapitre précédent, la solution de basexBcorrespond à un sommet deK. Par conséquent, il suffit de calculer tous les sommets deKpour trouver la solution optimale.

Mais le nombre de sommets est de l"ordre

n!m!(nm)!ce qui est beaucoup trop pour desnetm relativement grands. Le principe de la méthode du simplexe est d"éviter de calculer tous les sommets. A partir d"un sommet donné, la méthode calculera une suite de sommets adjacents l"un par rapport au précédent et qui améliore la fonction objective.

3.1 Solutions de base adjacentes

Définition

3.1.1 Deux sommetsxetysont dits adjacents si les variables de base ne

diffèrent que d"un seul élément. 1

2CHAPITRE 3. MÉTHODE DU SIMPLEXE

Reprenons le problème modèle du premier chapitre écrit sous la forme canonique maxz= 5x1+ 4x2 x

1+x3= 6

x

1=4 +x2+x4= 6

3x1+ 2x2+x5= 22

x

1;x2;x3;x4;x50

Le sommetx= (4;5;2;0;0)correspond aux variables de basefx1;x2;x3g. De même, le sommety= (6;2;0;2:5;0)est associé aux variables de basefx1;x2;x4g. Les deux sommets sont adjacents ce qui est conforme au graphique de l"ensembleKprojeté dansR2.

Le système s"écrit

2 6

641 0 1 0 0

1=4 1 0 1 0

3 2 0 0 13

7 752
6 6664x
1 x 2 x 3 x 4 x 53
7

7775=2

6 646
6 223
7 75
Pour calculer la solution de base(4;5;2;0;0), il suffit d"extraire les 3 colonnes de la matriceA

et de résoudre le système carré par la méthode d"élimination de Gauss. Toutefois, lorsque que

l"on voudra calculer la nouvelle solution de base(6;2;0;2:5;0), il faudra recommencer l"éli- mination de Gauss avec les nouvelles colonnes de base. Il est plus avantageux de poursuivre élimination de Gauss à partir du premier calcul.

Voici un exemple de calcul.

a)

En premier, on forme la matrice augmen tée

2 6

641 0 1 0 0 6

1=4 1 0 1 0 6

3 2 0 0 1 223

7 75
b) On applique l"élimination de Gauss-Jordan p ourles v ariablesde base fx1;x2;x3g. 2 6

641 0 04=5 2=5 4

0 1 0 6=51=10 5

0 0 1 4=52=5 23

7 75
Donc x

1= 4 + 4=5x42=5x5

x

2= 56=5x4+ 1=10x5

x

3= 24=5x4+ 2=5x5

En posant les variables hors-basesx4=x5= 0, on obtient bien la solution de base x= (4;5;2;0;0).

3.2. MÉTHODE DU SIMPLEXE : PHASE II3

c) Main tenant,on désire calculer la solution de base adjacen tel iéesaux v ariablesd ebase fx1;x2;x4g. Pour cela, on poursuit l"élimination de Gauss-Jordan à partir du pivot a 3;42 6

641 0 1 0 0 6

0 13=2 0 1=2 2

0 0 5=4 11=2 5=23

7 75:
Donc x

1= 6x3

x

2= 2 + 3=2x31=2x5

x

4= 5=25=4x3+ 1=2x5

En posant les variables hors-basesx3=x5= 0, on obtient bien la solution de base y= (6;2;0;2:5;0). d) P oursuivonsà u nautre sommet adjacen tz= (6;0;0;4:5;4)dont les variables de base sontfx1;x4;x5g. Ce sommet est adjacent àymais pas àx. Poursuivons l"élimination de Gauss-Jordan à partir du pivota2;5 2 6

641 0 1 0 0 6

0 23 0 1 4

0 11=4 1 0 9=23

7 75:

On obtient les relations

xquotesdbs_dbs2.pdfusesText_2