[PDF] 1 Programmation linéaire



Previous PDF Next PDF







Simplexe forme Tableau Exercice corrigés x 2 x - x

Simplexe forme Tableau Exercice corrigés Exercice N° 1 : Soit le problème de Programmation linéaire suivant : Max Z = 3x1 + 2x2 x1 + 2x2



Module 06 - Leçon 03 : La méthode du simplexe

du simplexe dont la démarche est la suivante : (voir schéma page suivante) 2 - Application Reprenons l'exemple de la Leçon 2 La résolution par l'algorithme du simplex se déroule selon 8 étapes avant un nouveau passage 1ère étape : Écrire le système sous forme standard



chapitre 3 - Université libre de Bruxelles

MATH-F-306 – 3 Algorithme du Simplexe Exercice 3 1 Exercice 3 1 On consid`ere le poly`edre S de R5 d´efini par les conditions suivantes : x 1 + x 3 + x 5 = 2, 2x 2 + x 3 + x 4 = 4, x 1 + x



Chapitre 3 Méthode du simplexe - Université Laval

6 CHAPITRE 3 MÉTHODE DU SIMPLEXE Onobservequeladernièrelignes’écrit 1=3 x 1 2=3 x 4 z = 2 ()z = 2+1=3 x 1 2=3 x 4: Etantdonnéquelesvariablehors-basevérifiex 1 = x 4 = 0,onaquez = 2 quiestla



2 Méthode du simplexe et son analyse

Méthode du simplexe – forme algébrique • Les contraintes constituent un système de 3 équations comportant 5 variables Exprimons 3 des variables en fonction des 2 autres: u = 30 – 5x – 3y p = 24 – 2x – 3y h = 18 – 1x – 3y z = 0 – 8x – 6y • En fixant x et y nous retrouvons les valeurs des autres variables



1 Programmation linéaire

Corrigé ex 3 : Méthode des variables ajoutées Les deux programmes d’optimisation de cet exercice présentent une difficulté sup-plémentaire pour appliquer la méthode du simplexe : on ne peut pas démarrer le sim-plexe à partir de l’origine (c’est-à-dire à partir du point de coordonnées nulles) car ce





174 EXERCICES SUPPLÉMENTAIRES — PARTIE II

lité de la programmation linéaire, l’algorithme du simplexe révisé, les notions de dualité, et les variantes duales et primales-duales de l’algorithme du simplexe 4 1 Formulation du problème Pour simplifier l’exposé, nous considérons que le problème est formulé sous la forme dite standard, c’est-à-dire min cx sujet à Ax



TD 2 : Simplexe et PLNE

TD 2 : Simplexe et PLNE Exercice 1 2 RCP104 –Optimisation en Informatique Décembre 2014 Soit un problème de minimisation pour lequel on a commencé l’arborescence de recherche d’une solution optimale suivante, où les sommets sont arbitrairement notés A, B, , I :



[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] multiplicateur des dépenses publiques macroéconomie

[PDF] fonction de cobb douglas pdf

[PDF] revenu d'équilibre et revenu de plein emploi

[PDF] fonction cobb douglas ses

[PDF] multiplicateur de depense publique(definition)

[PDF] revenu d'équilibre en économie fermée

1 Programmation linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE

U.F.R. SEGMI Année universitaire 2012 - 2013

Master d"économie Cours de M. Desgraupes

Méthodes Numériques

Document 4 : Corrigé des exercices d"optimisation linéaire1 Programmation linéaire 1 Méthode du simplexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Raffinerie de pétrole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Méthode des variables ajoutées . . . . . . . . . . . . . . . . . . . . . . . . 6 Indices d"octane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fabrique de pièces détachées . . . . . . . . . . . . . . . . . . . . . . . . . 13 Plan de production de moteurs . . . . . . . . . . . . . . . . . . . . . . . . 15 Excavation et matériaux de carrière . . . . . . . . . . . . . . . . . . . . . . 17

2 Dualité 19

Main d"oeuvre et équipements . . . . . . . . . . . . . . . . . . . . . . . . 19 Trois techniques de production . . . . . . . . . . . . . . . . . . . . . . . . 21

Production en heures-machines . . . . . . . . . . . . . . . . . . . . . . . . 221 Programmation linéaire

Corrigé ex. 1 : Méthode du simplexe

Programme 1

8 >>>>>:Max(x1+ 2x2) x

1+ 3x221

x1+ 3x218 x 1x25 x

1etx20

On introduit des variables d"écart, ce qui conduit aux équations suivantes pour les contraintes du problème : 8>< :x

1+ 3x2+x3= 21

x1+ 3x2+x4= 18 x

1x2+x5= 5

Le premier tableau du simplexe s"écrit :

1 x

1x2x3x4x51 3 1 0 021x

3-1 3 0 1 018x

41 -1 0 0 15x

5-1 -2 0 0 00

La variable entrante estx2qui correspond à l"élément le plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne dex2(colonne entrante) : Min 213
;183 =183 = 6 Doncx4est la variable sortante. La ligne dex4sert de ligne pivot et on exécute une transformation du pivot autour de la valeur 3 (à l"intersection de la ligne dex4et de la colonne dex2).

On obtient le tableau suivant :

x

1x2x3x4x52 0 1 -1 03x

3-1/3 1 0 1/3 06x

22/3 0 0 1/3 111x

5-5/3 0 0 2/3 012

Maintenant c"estx1qui entre etx3qui sort car :

Min 32
;112=3 =32 Un nouveau pivot autour du nombre 2 (à l"intersection de la ligne dex3et de la colonne dex1) conduit au tableau suivant : x

1x2x3x4x51 0 1/2 -1/2 03/2x

10 1 1/6 1/6 013/2x

20 0 -1/3 2/3 110x

50 0 5/6 -1/6 029/2

Maintenant c"estx4qui entre etx5qui sort car :

Min

13=21=6;102=3

=102=3= 15 Un nouveau pivot autour du nombre 2/3 (à l"intersection de la ligne dex5et de la colonne dex4) conduit au tableau suivant : x

1x2x3x4x51 0 1/4 0 3/49x

10 1 1/4 0 -1/44x

20 0 -1/2 1 3/215x

40 0 3/4 0 1/417

2 Ce tableau correspond à l"optimum car il n"y a plus de termes négatifs dans la dernière ligne. On obtient donc comme solution :

8>>>>>><

>>>>>:x 1= 9 x 2= 4 x 3= 0 x 4= 15 x 5= 0 La première et la troisième contrainte sont saturées.

Programme 2

8 >>>>>:Min(x13x2)

3x12x27

x1+ 4x29

2x1+ 3x26

x

1etx20

On transforme le problème en une maximisation en changeant le signe de la fonc- tion objectif :

Max(x1+ 3x2)

On introduit ensuite les variables d"écart comme ceci : 8>>>< >>:3x12x2+x3= 7 x1+ 4x2+x4= 9

2x1+ 3x2+x5= 6

x

1etx20

Le tableau de départ pour la méthode du simplexe est donc : x

1x2x3x4x53 -2 1 0 07x

3-1 4 0 1 09x

4-2 3 0 0 16x

51 -3 0 0 00

quotesdbs_dbs2.pdfusesText_2