[PDF] Limite dune suite Suites convergentes



Previous PDF Next PDF







Limite dune suite Suites convergentes

Limite d'une suite Suites convergentes 1 Limite d'une suite 1 1 Limite infinie a) Définitions On dit que la suite(un)admet pour limite +∞ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang



Limite dune suite Suites convergentes

Limite d'une suite Suites convergentes Correction : 1 a) On peut conjecturer que la suite(un) est croissante et que (un) est convergente b) f (x)=0,8x+1 f est strictement croissante sur ℝ On veut démontrer en utilisant un raisonnement par récurrence que la suite(un) est strictement croissante, c'est à dire pour tout entier naturel n



Christophe Bertault — Mathématiques en MPSI LIMITE D UNE SUITE

2 LIMITE D’UNE SUITE RÉELLE DANS R 2 1 DÉFINITION Définition (Limite d’une suite) Soient (un)n∈Nune suite réelle et ℓ∈ R • Définition générale : On dit que (un)n∈Nadmet ℓpour limite si tout voisinage de ℓcontient tous les un à partir d’un certain rang, i e si : ∀Vℓ∈ Vℓ(R), ∃ N ∈ N, ∀n ¾N, un ∈ Vℓ



Convergence de suites - Université de Paris

III Convergence d’une suite Dans cet exercice, nous allons revoir di erents r esultats li es a l’ etude de la convergence de suites : { une suite non born ee n’est jamais convergente (a), { une suite born ee n’est pas n ecessairement convergente (c), { la limite d’une suite est apparent ee a la limite d’une fonction,



Suites 1 Convergence

Indication 3 On prendra garde a ne pas parler de limite d’une suite sans savoir au pr´ealable qu’elle converge Vous pouvez utiliser le r´esultat du cours suivant : Soit (u n) une suite convergeant vers la limite ‘ alors toute sous-suite (v n) de (u n) a pour limite ‘ Indication 4 Ecrire la convergence de la suite et fixer´ ε = 1 2



PARTIE I ANALYSE - univ-toulouse

D´efinition d’une suite de r´eels, d’une suite extraite D´efinition d’une suite convergente et de sa limite R-alg`ebre des suites convergentes et op´erations alg´ebriques sur les lim-ites Comparaisons (notations O et o , ´equivalence) D´efinition d’une suite de Cauchy



Suites numériques Convergence, valeurs d’adhérence Exemples

n) une suite numérique et l un nombre réel ou complexe On dit que (u n) admetpourlimitelsi 8 >0;9N2N tel que n Nimplique ju n lj Théorème2 Si une suite numérique (u n) admet unelimite,alorselleestunique Définition3 On dit qu’une suite (u n) est convergente si elle admet une limite Dans le cas contraire,onditquelasuiteestdivergente



SCILAB : Algorithmes d’Analyse à Connaître par Coeur 1

approchée à e près donné de la limite d’une suite convergente ou de la somme d’une série convergente ou alors de trouver le plus petit indice n pour lequel l’écart à la limite vaut un e donné Dans ce genre d’exercice, on va bien entendu devoir utiliser une boucle while Premier exemple : Soit (u n) n2N la suite définie par u 0



Cours 14 : Topologie (B)

Elle admet une sous-suite convergente dont la limite appartient à K, puisque K est compact Cette limite est ‘ car toute suite extraite d’une suite de limite ‘converge vers ‘ 2 Si F est un fermé inclus dans le compact K, toute suite d’éléments de F est une suite d’éléments de K, donc admet une valeur d’adhérence ‘2K Or

[PDF] limite d'une suite definition

[PDF] limite d'une suite exercices corrigés

[PDF] limite d'une suite géométrique

[PDF] limite d'une suite géométrique de raison négative

[PDF] limite d'une suite intégrale

[PDF] limite d'une suite première s

[PDF] limite d'une suite récurrente

[PDF] limite d'une suite terminale es

[PDF] limite d'une suite terminale s

[PDF] limite de 1/n

[PDF] Limite de fonction

[PDF] Limite de fonction

[PDF] Limite de fonction en 1

[PDF] Limite de fonction et fonction exponentielle

[PDF] limite de fonction exponentielle

Limite d'une suite.

Suites convergentes

1. Limite d'une suite.............................................p24. Cas particuliers................................................p9

2. Limites et comparaison....................................p65. Suites monotones.............................................p11

3. Opérations sur les limites.................................p7

Limite d'une suite.

Suites convergentes.

1. Limite d'une suite

1.1. Limite infinie

a) Définitions On dit que la suite(un)admet pour limite + ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitun>A (un∈]A;+∞[).

On note

limn→+∞ un=+∞On dit que la suite (un)admet pour limite - ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont inférieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitunOn note limn→+∞ un=-∞b) Exemples un=3n+2. On veut démontrer quelimn→+∞un=+∞ Soit

Aun nombre réel.

un>AÛ3n+2>AÛn>A-2 3 A-2

3est un nombre réel donc compris entre 2 entiers consécutifs.

E (A-2

3)⩽A-2

3 3)+1 E (A-2

3)est la partie entière de

A-2 3.

On choisitn0=E

(A-2 3)+1 Si, n⩾n0alors un>Aet donclimn→+∞ un=+∞.

Limite d'une suite.

Suites convergentes.un=-n2. On veut démontrer quelimn→+∞ un=-∞ Soit

Aun nombre réel.

-n2A<0alors A=-BavecB>0(B=∣A∣)

[0;+∞[E(

On choisit

n⩾n0alors unOn construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

duquel un⩾1000.

Avec Algobox :

Limite d'une suite.

Suites convergentes.

Avec une calculatrice TI :un=-n2.

limn→+∞ un=-∞Pour un réel

On construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

Avec Algobox :

Avec une calculatrice TI :

1.2. Suites convergentes

a) Définitions lest un nombre réel.

On dit que la suite

(un)admet pour limite l si et seulement si, pour tout intervalle ouvert I, contenant l, contient tous les termes de la suite à partir d'un certain rang.

Limite d'une suite.

Suites convergentes.

On notelimn→+∞un=l

On dit alors que la suite(un)converge vers l et que la suite(un)est une suite convergente. On nomme suite divergente toute suite non convergente. b) Interprétation graphique sur un exemple

1.3. Proposition

Si une suite admet une limite alors celle-ci est unique.

Ce résultat est admis.

1.4. Remarques

a) Il existe des suites n'admettant pas de limite. Par exemple :un=(-1)n. Les termes de rangs pairs sont égaux à 1 et les termes de rangs impairs sont égaux à -1.

Conséquence :

Une suite divergente est une suite admettant une limite infinie ou n'admettant pas de limite. b) Si un=f(n)(pour tout entier naturel n)et sifadmetlpour limite en+∞alors la suite(un)converge versl.

Limite d'une suite.

Suites convergentes.

Exemple :un=3-1

n+1 f(x)=3-1 x+1. fest définie sur[0;+∞[et limx→+∞ f(x)=3Donc, la suite (un)converge vers 3.

Siun=f(n)(pour tout entier naturel n)et si

fadmet+∞ou-∞pour limite en+∞alorslimn→+∞ un=+∞ou limn→+∞ un=-∞Exemple : un=4n2-2 f(x)=4x2-2 fest définie sur[0;+∞[et limx→+∞

Attention, si

fn'admet pas de limite en+∞alors on ne peut pas conclure pour la limite de la suite(un).

Exemple :

f(x)=sin(πx) fest définie sur[0;+∞[etfn'admet pas de limite en+∞. un=f(n)=sin(πn)=0 (un)est la suite constante nulle :limn→+∞un=0

2. Limite et comparaison

2.1. Premier théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩾unet silimn→+∞un=+∞alorslimn→+∞ vn=+∞.

Démonstration : La démonstration peut être l'objet d'une restitution organisée des connaissances au

baccalauréat.

A partir d'un certain rang

vn⩾un, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalorsvn⩾un. Soit Aun nombre réel. On sait quelimn→+∞un=0, donc il existe un entiern0tel que :

Limite d'une suite.

Suites convergentes.

Sin⩾n0alorsun>A.

On poseN0le plus grand des entiers naturels

N0=max(N;n0)etn0(on note :N0=max(N;n0)ouN0=Sup(N;n0)) Si, n⩾N0alors vn⩾unetun>Adoncvn>Aetlimn→+∞vn=0.

2.2. Deuxième théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩽unet silimn→+∞un=-∞alorslimn→+∞ vn=-∞. La démonstration est analogue à la précédente.

2.3. Théorème des gendarmes

(un);(vn);(wn)sont trois suites. lest un nombre réel.

Si à partir d'un certain rang,

un⩽vn⩽wnet silimn→+∞un=limn→+∞wn=lalors(vn)est une suite convergente et converge vers l .

Démonstration :

A partir d'un certain rang

un⩽vn⩽wn, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalors un⩽vn⩽wn.

Soit I un intervalle ouvert contenant l.

limn→+∞un=ldonc il existe un entier naturel n0tel que : sin⩾n0alorsun∈Ilimn→+∞wn=ldonc il existe un entier naturel n'0tel que : sin⩾n'0alorswn∈IOn pose

N0le plus grand des entiers naturelsN;n0;n'0Si,

n⩾N0alors etun⩽vn⩽wn ;un∈I ;wn∈Idonc [un;wn]ÌI. Et vn∈Idonclimn→+∞vn=l.

3. Opérations sur les limites

Les règles opératoires sur les limites de suites sont les mêmes que celles pour les limites de fonctions.

3.1. Limite d'une somme de suites

Limite d'une suite.

Suites convergentes.

3.2. Limite d'un produit de suites

3.3. Limite de l'inverse d'une suite

3.3. Limite du quotient de deux suites

Limite d'une suite.

Suites convergentes.

4. Cas particuliers

4.1. Suites arithmétiques

a) Rappel(un)est la suite arithmétique de premier terme u0et de raisonrdonc pour tout entier n : un+1=un+ret un=u0+nrb) Limite d'une suite arithmétique

Si r >0 alors

limn→+∞ un=+∞Si r< 0 alors limn→+∞ un=-∞Si r= 0 alors limn→+∞ un=u0Remarque : Pour r=0, (un)est la suite constante égale àu0. Les seules suites arithmétiques convergentes sont les suites constantes (de raison 0).

4.2. Suites géométriques

a) Rappel (un)est la suite géométrique de premier terme u0et de raisonqdonc pour tout entier n : un+1=qunet un=u0qnb) Théorème

Si q >1 alors

limn→+∞ qn=+∞Démonstration :

La démonstration peut être l'objet d'une restitution organisée des connaissances au baccalauréat.

Limite d'une suite.

Suites convergentes.

On posea=q-1>0

q=a+1avec a>0Nous avons démontré dans la leçon 1 (par un raisonnement par récurrence) que pour tout entier naturel n,

(1+a)n⩾1+na

Or, limn→+∞(1+na)=+∞

En utilisant le théorème de comparaison, on peut conclure quelimn→+∞(1+a)n=+∞ soit

limn→+∞ qn=+∞. b) Conséquence

Si 0< q <1 alors

limn→+∞ qn=0Si q= 1 alorslimn→+∞qn=1

Si q= 0 alors

limn→+∞ qn=0Si -1< q <0 alors limn→+∞ qn=0Si q =-1 alors(qn)n'admet pas de limite.

Si q< -1 alors(qn)n'admet pas de limite.

Démonstration

Si

0 q>1. limn→+∞ q'n=+∞et qn=1 q'ndonclimn→+∞ qn=0Si -10qn=(-q')n=(-1)nq'n et -q'n⩽qn⩽q'nOr,

0 Le théorème des gendarmes permet de conclure quelimn→+∞qn=0

Siq<-1

q=-q'avecq'>1

Si n est pair alorsqn=q'n

Si n est impair alors

qn=-q'nDonc, (qn)n'admet pas de limite.

Limite d'une suite.

Suites convergentes.

d) Limite d'une suite géométriqueun=u0qn (on supposeu0≠0)

Si q> 1 et

u0>0alorslimn→+∞ un=+∞Si q> 1 et u0<0alorslimn→+∞ un=-∞Si q= 1 alorslimn→+∞un=u0

Si -1

Si - q

£ -1 alors la suite(un)n'admet pas de limite. e) Remarque -1Sn=u01-qn

1-q Or, limn→+∞ qn=0donclimn→+∞Sn=u0 1-q

5. Suites monotones

5.1. Théorèmes

Toute suite croissante et majorée est convergente. Toute suite décroissante et minorée est convergente.

On admet ces résultats.

5.2. Propositions

Si (un)est une suite croissante et non majorée alors limn→+∞un=+∞.

Démonstration :

Soit A un nombre réel.

(un)n'est pas majorée donc il existe un entier natureln0tel que un0>A. (un)est croissante donc pour tout entier naturel ou égal àn0, on aun⩾un0>A.

Limite d'une suite.

Suites convergentes.

Donc, limn→+∞

un=+∞. Si (un)est une suite décroissante et non minorée alors limn→+∞un=-∞.

Démonstration :

La démonstration est analogue.

Si (un)est une suite croissante et majorée donc convergente alors sa limite l est un majorant de la suite, c'est à dire pour tout entier natureln : un⩽l

Démonstration :

On effectue un raisonnement par l'absurde.

On suppose qu'il existe un entier naturel

Ntel queuN>l.

(un)est croissante, donc pour tout entier naturelnsupérieur ou égal àN, on aun⩾uN>l.

On considère l'intervalle ouvert

I=]l-1;uN[contenant l.

On n'a pas tous les termes de (un)appartenant à I à partir d'un certain rang puisque tous les termes de la suite

de rang supérieur ou égal à

Nsont à l'extérieur de I.

Donc, si on suppose l'existence de

N, on démontre que la suite ne converge pas vers l.

Il n'existe pas d'entier naturel

Netlest donc un majorant de(un).

Si (un)est une suite décroissante et minorée donc convergente alors sa limite l est un minorant de la suite, c'est à dire pour tout entier naturel n : un≥lDémonstration :

La démonstration est analogue.

quotesdbs_dbs18.pdfusesText_24