[PDF] Limites de fonctions - Exo7



Previous PDF Next PDF







Formes indéterminées - MATHEMATIQUES

• La limite d’un polynôme en +∞ ou −∞ est égale à la limite de son terme de plus haut degré • La limite d’une fonction rationnelle en +∞ ou −∞ est égale à la limite du quotient de ses termes de plus haut degré Nombres dérivés Les limites suivantes sont fournies dans le cours Elles fournissent toutes un nombre



LIMITES DE FORMES INDETERMINEES FI

Utiliser la limite d’un taux d’accroissement pour lever cas de la forme : Etudier la limite en 2 de ( ) √ Solution 4 Se ramener à une limite connue : Déterminer la limite en 1 de ( ) ( ) Solution 5 Utiliser le théorème de comparaison : Etudier 6 Mettre les termes de plus haut degré en facteur Etudier √ Solution 7



CHAPITRE 4 : LIMITES - Free

1 3 Limite égale à un réel fini L (ou encore limite finie) Soit L un nombre réel fini ( )L∈R Définition Dire que la limite de f en α est le réel L signifie que tout intervalle de la forme ]LAL A A;()[∗ −+ ∈R+ contient tous les réels fx() dès que x est suffisamment proche de α On écrit lim ( ) lim x f x L ou encore f L →α



Limites - ac-rouenfr

x tend vers a, le point M se rapproche du point A, a la limite la corde devient la tangente en A a la courbe repr´esentant f Lorsque lim x→a f(x)−f(a) x−a est un r´eel, c’est la pente de la tangente en A(a,f(a)) a C f cin´ematique Si f(t) d´ecrit le d´eplace d’un mobile le long d’un axe au cours du temps t alors f0(a



LIMITES ET CONTINUITÉ (Partie 1)

I Limite d'une fonction à l'infini 1) Limite finie à l'infini Intuitivement : On dit que la fonction f admet pour limite L en +∞ si f (x) est aussi proche de L que l’on veut pourvu que x soit suffisamment grand Exemple : La fonction définie par f(x)=2+ 1 x a pour limite 2 lorsque x tend vers +∞



LIMITES – EXERCICES CORRIGES

2) Si une fonction f a pour limite 0 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe 3) Si une fonction f a pour limite -1 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe Exercice n°5



Les limites et la fonction exponentielle Les techniques pour

Déterminer la limite en + ∞ de f(x) = 1 2 + + x ex Par calcul direct , on a une forme indéterminée , mais on va utiliser la croissance comparée ; pour cela il faut faire apparaître dans la forme exponentielle et au dénominateur de la fraction la même expression Puisqu’on ne peut pas toucher à l’exponentielle , on « joue » avec la



Fonctions usuelles – Limites

– Si la limite de f(x) quand x tend vers a existe alors elle est unique – Si pour tout x de I, f(x) est positif ou nul et si la limite de f(x) quand x tend vers a existe alors la limite de f(x) est positive ou nulle – Si la limite de f(x) quand x tend vers a existe et est non



Limites de fonctions - Exo7

2 Montrer que la limite est la borne supérieure de l’ensemble des valeurs atteintes f(R) Indication pourl’exercice2 N Utiliser l’expression conjuguée Indication pourl’exercice3 N Réponses : 1 La limite à droite vaut +2, la limite à gauche 2 donc il n’y a pas de limite 2 ¥ 3 4 4 2 5 1 2 6 0 7 1 3 en utilisant par exemple que a

[PDF] Limite infinie d'une suite

[PDF] limite ln usuelles

[PDF] limite logarithme népérien en 0

[PDF] limite logarithme népérien et exponentielle

[PDF] limite math

[PDF] limite math forme indéterminée

[PDF] limite math tableau

[PDF] limite polynome en 0

[PDF] limite polynome terme plus haut degré

[PDF] limite racine carré en 0

[PDF] limite racine carré forme indéterminée

[PDF] limite sinus en l'infini

[PDF] limite somme suite géométrique

[PDF] limite suite

[PDF] limite suite arithmético géométrique

Exo7

Limites de fonctions

1 Théorie

Exercice 11.Montrer que toute fonction périodique et non constante n"admet pas de limite en +¥.

2. Montrer que toute fonction croissante et majorée admet une limite finie en +¥. 1.

Démontrer que lim

x!0p1+xp1xx =1. 2. Soient m;ndes entiers positifs. Étudier limx!0p1+xmp1xmx n. 3.

Démontrer que lim

x!01x (p1+x+x21) =12 Exercice 3Calculer lorsqu"elles existent les limites suivantes a)limx!0x2+2jxjx b)limx!¥x2+2jxjx c)limx!2x24x 23x+2
d)limx!psin2x1+cosxe)limx!0p1+xp1+x2x f)limx!+¥px+5px3 g)limx!03p1+x21x

2h)limx!1x1x

n1 Calculer, lorsqu"elles existent, les limites suivantes : lim x!ax n+1an+1x nan; lim x!0tanxsinxsinx(cos2xcosx); 1 lim x!+¥rx+qx+pxpx; lim x!a+pxpapxapx

2a2;(a>0)

lim x!0xE1x lim x!2e xe2x 2+x6; lim x!+¥x

41+xasin2x;en fonction dea2R.

Calculer :

limx!0x2+sin1x ;limx!+¥(ln(1+ex))1x ;limx!0+x1ln(ex1):

Trouver pour(a;b)2(R+)2:

lim x!0+ ax+bx2 1x Déterminer les limites suivantes, en justifiant vos calculs. 1. lim x!0+x+2x 2lnx 2. lim x!0+2xln(x+px) 3. lim x!+¥x

32x2+3xlnx

4. lim x!+¥epx+1x+2 5. lim x!0+ln(3x+1)2x 6. lim x!0+x x1ln(x+1) 7. lim x!¥2x+1lnx3+41x2 8. lim x!(1)+(x21)ln(7x3+4x2+3) 2 9.lim x!2+(x2)2ln(x38) 10. lim x!0+x(xx1)ln(x+1) 11. lim x!+¥(xlnxxln(x+2)) 12. lim x!+¥e xex2x 2x 13. lim x!0+(1+x)lnx 14. lim x!+¥ x+1x3 x 15. lim x!+¥ x3+5x 2+2 x+1x 2+1 16. lim x!+¥ ex+1x+2 1x+1 17. lim x!0+ln(1+x) 1lnx 18. lim x!+¥x (xx1)x (xx) 19. lim x!+¥(x+1)xx x+1 20. lim x!+¥xpln(x2+1)1+ex3 Indication pourl"exer cice1 N1.Raisonner par l"absurde. 2.

Montrer que la limite est la borne supérieure de l"ensemble des v aleursatteintes f(R).Indication pourl"exer cice2 NUtiliser l"expression conjuguée.

Indication pour

l"exer cice

3 NRéponses :

1. La limite à droite v aut+2, la limite à gauche2 donc il n"y a pas de limite.

2.¥

3. 4 4. 2 5. 12 6. 0 7. 13 en utilisant par exemple quea31= (a1)(1+a+a2)poura=3p1+x2. 8. 1n

Indication pour

l"exer cice

4 N1.Calculer d"abord la limite de f(x) =xkakxa.

2. Utiliser cos 2x=2cos2x1 et faire un changement de variableu=cosx. 3.

Utiliser l"e xpressionconjuguée.

4.

Di visernumérateur et dénominateur par

pxapuis utiliser l"expression conjuguée. 5.

On a toujours y16E(y)6y, posery=1=x.

6.

Di visernumérateur et dénominateur par x2.

7.

Pour a>4 il n"y a pas de limite, poura<4 la limite est+¥.Indication pourl"exer cice5 NRéponses : 0;1e

;e: 1.

Borner sin

1x 2. Utiliser que ln (1+t) =tm(t), pour une certaine fonctionmqui vérifiem(t)!1 lorsquet!0. 3.

Utiliser que et1=tm(t), pour une certaine fonctionmqui vérifiem(t)!1 lorsquet!0.Indication pourl"exer cice6 NRéponse:

pab.4

Correction del"exer cice1 N1.Soit p>0 la période: pour toutx2R,f(x+p) =f(x). Par une récurrence facile on montre :

8n2N8x2Rf(x+np) =f(x):

Commefn"est pas constante il existea;b2Rtels quef(a)6=f(b). Notonsxn=a+npetyn= b+np. Supposons, par l"absurde, quefa une limite`en+¥. Commexn!+¥alorsf(xn)!`. Mais f(xn) =f(a+np) =f(a), donc`=f(a). De même avec la suite(yn):yn!+¥doncf(yn)!`et f(yn) =f(b+np) =f(b), donc`=f(b). Commef(a)6=f(b)nous obtenons une contradiction. 2. Soit f:R!Rune fonction croissante et majorée parM2R. Notons

F=f(R) =ff(x)jx2Rg:

Fest un ensemble (non vide) deR, notons`=supF. CommeM2Rest un majorant deF, alors`<+¥. Soite>0, par les propriétés du sup il existey02Ftel que`e6y06`. Commey02F, il existe x

02Rtel quef(x0) =y0. Commefest croissante alors:

8x>x0f(x)>f(x0) =y0>`e:

De plus par la définition de`:

8x2Rf(x)6`:

Les deux propriétés précédentes s"écrivent:

8x>x0`e6f(x)6`:

Ce qui exprime bien que la limite defen+¥est`.Correction del"exer cice2 NGénéralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire

intervenir "l"expression conjuguée": papb=(papb)(pa+pb)pa+pb =abpa+pb Les racines au numérateur ont "disparu" en utilisant l"identité(xy)(x+y) =x2y2.

Appliquons ceci sur un exemple :

f(x) =p1+xmp1xmx n (p1+xmp1xm)(p1+xm+p1xm)x n(p1+xm+p1xm)

1+xm(1xm)x

n(p1+xm+p1xm) 2xmx n(p1+xm+p1xm)

2xmnp1+xm+p1xm

Et nous avons

lim x!02p1+xm+p1xm=1: Donc l"étude de la limite defen 0 est la même que celle de la fonctionx7!xmn.

Distinguons plusieurs cas pour la limite defen 0.

5 •Si m>nalorsxmn, et doncf(x), tendent vers 0.quotesdbs_dbs47.pdfusesText_47