[PDF] LIMITES DES FONCTIONS - Maths & tiques



Previous PDF Next PDF







Formes indéterminées - MATHEMATIQUES

• La limite d’un polynôme en +∞ ou −∞ est égale à la limite de son terme de plus haut degré • La limite d’une fonction rationnelle en +∞ ou −∞ est égale à la limite du quotient de ses termes de plus haut degré Nombres dérivés Les limites suivantes sont fournies dans le cours Elles fournissent toutes un nombre



Quelques exemples de calculs de limites - wwwmadoreorg

2e exemple : calculer la limite de 12x2+7x+2 (x¡1)( x+3) lorsque x +1 De même que dans le 1er exemple, on a affaire à une forme indéterminée, cette fois dans une fonction rationnelle La technique est la même : isoler le terme dominant, tant au numérateur qu’au dénominateur Pour tout x 2 Rn f1;¡3 g, on écrit donc 12x2+7x+2



Limites de fonction - pagesperso-orangefr

Forme indéterminée 0 0 Forme indéterminée Exemples : On considère la fonction f définie sur ;0 0;3 3; par 2 2 41 3 fx xx xx Déterminer les limites de f aux bornes de son domaine de définition Lorsque le dénominateur a pour limite 0, il faut connaître son signe pour avoir la limite du



LIMITES DES FONCTIONS - Maths & tiques

* Forme indéterminée : On ne peut pas prévoir la limite éventuelle 2) Limite d'un produit Donc sous la forme donnée, la limite cherchée est indéterminée



Limite de fonctions - Mathovore

la forme indéterminée n est pas dûe à des termes qui deviennent grands ici la forme indéterminée est dûe à des termes qui tendent vers O donc inutile de se braquer sur les plus grands exposants si par exemple tend vers 2 aura intérêt à faire apparaitre des termes



LIMITES – EXERCICES CORRIGES

2) Si une fonction f a pour limite 0 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe 3) Si une fonction f a pour limite -1 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe Exercice n°5



Math䄐matiques en lyc䄐e

ner la limite, que l’on appelle une forme indéterminée, il faut changer la forme de l’expression Exemples un =n 2 −10n +3 lim n→+∞ n2 =+∞et lim n→+∞ −10n +3=−∞onadoncune formeindéterminée On vafactoriser n2, pour toutentiernaturel n nonnul ona: un =n 2 µ 1− + ¶



LIMITES DES FONCTIONS (Partie 2)

Donc sous la forme donnée, la limite cherchée est indéterminée Levons l'indétermination : • Pour tout +, −1≤sin+ donc : +−1≤++sin+ • Or lim 3→56 +−1=+∞ donc d'après le théorème de comparaison : lim 3→56 ++sin+=+∞ 2) • lim 3→56 cos+ n'existe pas Donc sous la forme donnée, la limite cherchée est indéterminée



CH3 – Analyse : Limites et continuité 3ème Maths Octobre 2009

Déterminons la limite en + ¥ du polynôme f défini pour tout réel x par : f(x) = 3x3 – 2x2 + 1 Au premier abord, lorsque x tend vers + ¥ : 33 tend vers + -2² tend vers - 1 tend vers 1 x x ì ¥ ï í ¥ ï î ainsi lim x fi +¥ f(x) = F I (Forme Indéterminée) L'actuelle écriture de f ne permet pas de conclure Modifions la 3 33

[PDF] limite math tableau

[PDF] limite polynome en 0

[PDF] limite polynome terme plus haut degré

[PDF] limite racine carré en 0

[PDF] limite racine carré forme indéterminée

[PDF] limite sinus en l'infini

[PDF] limite somme suite géométrique

[PDF] limite suite

[PDF] limite suite arithmético géométrique

[PDF] limite suite définie par récurrence

[PDF] limite suite géométrique

[PDF] limite variation

[PDF] limite, fonction exponentielle et démonstration

[PDF] Limiter l'alcoolisme chez les jeunes

[PDF] Limiter l'atteinte à la biodiversité planétaire

1

LIMITES DES FONCTIONS

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales. 2

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

3

Remarques :

• Lorsque tend vers +∞, la courbe de la fonction "se rapproche" de son asymptote. • On a une définition analogue en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher. 4

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à droite de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à gauche de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . 5

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2) -∞-425+∞ -∞-425+∞ +∞+∞ +∞5

56-∞

6

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim lim lim F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. PRODUIT ∞ désigne +∞ ou -∞ lim ∞ 0 lim lim F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim ≠0 0 lim ′≠0

0 ∞ ∞

0 lim ∞ 0 ∞ F.I. F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

F lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

7 b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3

2) Cas des formes indéterminée (non exigible)

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1) - NON EXIGIBLE

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • F lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3 +2 -6+1= M-3+ 2 6 1 N •lim 2 =lim 6 2 =lim 1 3 =0.

Donc, par limite d'une somme :

lim -3+ 2 6 1 =-3 •P lim -3+ 2 6 1 =-3 lim 8

Donc, par limite d'un produit :

lim M-3+ 2 6 1

N=-∞

Soit : lim

-3 +2 -6+1=-∞. Méthode : Lever une forme indéterminée à l'aide de factorisations - NON EXIGIBLE

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

Calculer : a) lim

2

2 -5+1

6

2 -5 b) lim

3

2 +2

4-1

Correction

a) • En appliquant la méthode précédente pour le numérateur et le dénominateur cela

conduirait à une forme indéterminée du type " • Levons l'indétermination en factorisant les monômes de plus haut degré :

2

-5+1

6

-5 2- 0 6- 2- 0 6- • lim 5 =lim 1 2 =lim 5 2 =0.

Donc, comme limite de sommes :

lim 2- 5 1 =2etlim 6- 5 =6 • Donc, comme limite d'un quotient : lim 2- 0 6- 2 6 1 3

Soit : lim

2

2 -5+1

6

2 -5 1 b) • Il s'agit d'une forme indéterminée du type " • Levons l'indétermination en factorisant les monômes de plus haut degré :

3

+2

4-1

3+ 4- 0 3+ 4- 0 • limquotesdbs_dbs47.pdfusesText_47