[PDF] Mathématiques terminale S



Previous PDF Next PDF







Avec 11 schémas d’illustration Jean-Pierre Kengne, Emmanuel Simo

Inspirée de la pédagogie nouvelle, la conception de ce livre se fonde sur deux outils à savoir : le cours et les exercices corrigés Le cours a été conçu selon le projet pédagogique suivant : — Une présentation claire parfaitement lisible qui permet de faciliter le travail de l’apprenant — Un cours bien structuré allant à l



Mathématiques Cours, exercices et problèmes Terminale S

Le polycopié n’est qu’un résumé de cours Il ne contient pas tous les schémas, exercices d’application, algorithmes ou compléments prodigués en classe Il est indispensable de tenir des notes de cours afin de le compléter Compléments Certains passages vont au-delà des objectifs exigibles du programme de terminale S Le



RESUME DU COURS DE MATHEMATIQUES

élément de A est élément de E Alors A est une partie de E Si A B⊂ et B C⊂ alors A C⊂ A B A B B A= ⇔ ⊂ ⊂ et L’ensemble des parties de E est noté P E( ) Intersection de deux parties de E {/ et ∩ = ∈ ∈ ∈ A B x E x A x B} Deux ensembles A et B sont disjoints si ∩A B = Propriétés : A∩B =B ∩A



TERMINALE S LYCEE LOUIS ARMAND

le point de C d’abscisse Soit T a la tangente `a au point A 1 Ecrire une ´´ equation de T a 2 D´eterminer les r´eels a pour lesquels T a passe par l’origine O du rep`ere 3 Donner une ´equation de chacune des tangentes `a C, passant par O Tracer ces tangentes sur la figure Partie III On ´etudie maintenant l’intersection de



Mathématiques terminale S

• De façon récurrente : – à un terme : u0 et un+1 = f(un) – à deux termes : u0 et u1 et un+2 = f(un+1,un) • Par une somme de termes : un = n ∑ k=0 Tn 2 Variation Pour connaître les variations d’une suite (un), on étudie : • Le signe de : un+1 −un • Si les termes sont strictement positifs positifs, on peut comparer de



Livre De Maths Ciam - eartheducationprojectorg

File Type PDF Livre De Maths Ciam Livre De Maths Ciamtimesi font size 14 format Getting the books Livre De Maths Ciam now is not type of inspiring means You could not lonesome going taking into account book accretion or library or borrowing from your connections to right of entry them This is an no



Exo7 - Cours de mathématiques

fonction, et c’est pourquoi vous trouverez dans ce livre de nombreux dessins pour vous aider à comprendre l’intuition cachée derrière les énoncés En fin de volume, deux chapitres explorent les applications des études de fonctions au tracé de courbes paramétrées et à la résolution d’équations différentielles





PDF Compressor - DREN ABIDJAN 1

Terminate C Mathématiques Terminale SM (Livre Unique) Collection Avomaths — annales Terminale C Terminale D Mathématiques Terminale SE (Livre Unique) Physiques Terminales C et D Chimie Terminales C et D Sciences de la Vie et de la Terre, Terminales C PhilosophieA et B Les Philosophes africains par les textes Philosophie Classes de

[PDF] livre de maths 3eme phare en ligne

[PDF] livre de maths 4eme phare corrigé

[PDF] livre de maths 6eme phare en ligne

[PDF] livre de maths seconde hachette corrigé

[PDF] livre de maths seconde pdf

[PDF] livre de maths seconde s pdf

[PDF] livre de microbiologie gratuit pdf

[PDF] livre de physique 7eme pilote tunisie

[PDF] livre de physique chimie seconde hachette edition 2014 pdf

[PDF] livre de physique chimie seconde pdf

[PDF] livre de physique pdf gratuit

[PDF] livre de police auto entrepreneur

[PDF] livre de police automobile informatisé

[PDF] livre de police bijoux

[PDF] livre de police electronique

Mathématiques

Terminale S

Tout ce qu"il faut savoir

Paul Milan

Table des matières

1 Rappels sur les suites4

1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Programmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Suites arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Raisonnement par récurrence. Limite d"une suite 6

1 Raisonnement par récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6

2 Limite d"une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

4 Convergence d"une suite monotone . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Étude d"une fonction (chap. 3 à 6)10

1 Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Fonctions exponentielle et logarithme . . . . . . . . . . . . . . . . . . .. . . . 14

7 Les fonctions sinus et cosinus18

1 Équation trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Signe des fonctions sinus et cosinus . . . . . . . . . . . . . . . . . . . . . .. . 18

3 Propriétés des fonctions sinus et cosinus . . . . . . . . . . . . . . . . . .. . . . 18

4 Dérivées et limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19

5 Variations et représentations . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19

6 Fonctions sin(ax+b) et cos(ax+b) . . . . . . . . . . . . . . . . . . . . . . . .. . 19

7 Application aux ondes progressives . . . . . . . . . . . . . . . . . . . . .. . . 20

8 Intégrales et primitives22

1 Aire sous une courbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Calcul de primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Propriétés de l"intégrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 24

9 Les nombres complexes26

1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Conjugué . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Forme trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Vecteur, alignement et orthogonalité . . . . . . . . . . . . . . . . . . . . .. . . 27

2

TABLE DES MATIÈRES

10 Probabilités conditionnelles. Loi binomiale28

1 Probabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Probabilités conditionnelles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 29

3 Indépendance de deux événements . . . . . . . . . . . . . . . . . . . . . . . .. 30

4 Loi binomiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Lois à densité. Loi normale32

1 Lois à densité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Statistiques36

1 Intervalle de fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Prise de décision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

3 Estimation - Intervalle de confiance . . . . . . . . . . . . . . . . . . . . . .. . . 36

13 Géométrie dans l"espace. Vecteurs et produit scalaire. 38

1 Relations entre droites et plans . . . . . . . . . . . . . . . . . . . . . . . . .. . 38

2 Parallélisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3 Orthogonalité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Vecteurs dans l"espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

5 Coplanarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Dans un repère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Représentation paramétrique d"une droite et d"un plan . . . . . . . . . .. . . 40

8 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

9 Équation cartésienne d"un plan . . . . . . . . . . . . . . . . . . . . . . . . . . .41

10 Section d"un cube par un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Volume d"une pyramide et d"une sphère . . . . . . . . . . . . . . . . . . . .. . 42

3

Chapitre 1

Rappels sur les suites

1 Définition

On peut définir une suite(un):

•De façon explicite :un=f(n).

•De façon récurrente :- à un terme :u0etun+1=f(un) - à deux termes :u0etu1etun+2=f(un+1,un)

•Par une somme de termes :un=n∑

k=0T n

2 Variation

Pour connaître les variations d"une suite(un), on étudie :

•Le signe de :un+1-un

•Si les termes sont strictement positifs positifs, on peut comparerde rapport :un+1unà 1.

•Si la suite est définie de façon explicite, on peut aussi étudier le signe de la dérivée de la

fonction associée.

3 Visualisation

Pour visualiser une suite définie par récurrence, on trace, la fonctionfet la droitey=xqui permet de reporter les termes sur l"axe des abscisses. 0.5 0.5

Ou0u1u2u3u

4u 1u 2u 3u 4 y=x Cf

4 Programmation

Deux petits programmes pour programmer un terme particulier ou la liste des premiers termes d"une suite définie par récurrence : (on rentre la fonctionfà part,A=u0) 4

CHAPITRE 1. RAPPELS SUR LES SUITES

Variables

A,N,I,U,f(fonction)

Algorithme

LireA,N

A→U

PourIvariant de 1 àN

f(U)→U

FinPour

AfficherU

Variables

A,N,I,U,L1(liste),f(fonction)

Algorithme

LireA,N

A→U

ListeL1remis à 0

U→L1(1)

PourIvariant de 1 àN

f(U)→U

U→L1(I+1)

FinPour

AfficherL1

5 Suites arithmétiques

Définition :un+1=un+ret un premier terme.rest la raison

Propriété :un+1-un=Cte?n?N

Terme général :un=u0+nrouun=up+ (n-p)r

Somme des termes :1+2+3+···+n=n(n+1)

2 S n=u0+u1+···+un= (n+1)×u0+un

2=Nbre de termes×Σtermes extrèmes2

6 Suites géométriques

Définition :un+1=q×unet un premier terme.qest la raison

Propriété :

un+1 un=Cte?n?N

Terme général :un=u0×qnouun=up×qn-p

Somme des termes :1+q+q2+···+qn=1-qn+1

1-q S n=u0+u1+···+un=u0×1-qn+1

1-q=1erterme×1-qNbre termes1-q

5

Chapitre 2

Raisonnement par récurrence.

Limite d"une suite

1 Raisonnement par récurrence

1.1 Axiome de récurrence

Définition 1 :Soit une propriétéPdéfinie surN. Si : •la propriété estinitialiséeà partir d"un certain rangn0

•la propriété esthéréditaireà partir d"un certain rangn0(c"est à dire que pour toutn?n0

alorsP(n)? P(n+1) Alors : la propriété est vraie à partir du rangn0

1.2 Exemple

Démontrer que, pour tout entier naturel, la suite(un)est définie par : u

0=1 etun+1=⎷

2+unest telle que 0 Initialisation: on au0=1 donc 0La fonctionfdéfinie parf(x) =⎷

x+2 est croissante car composée de deux fonctions croissantes

0

2

La propositionP(n)est héréditaire.

Conclusion :par initialisation et hérédité, la propositionP(n)est vraie pour toutn.

2 Limite d"une suite

Définition 2 :On dit que la suite(un)a pour limite?si, et seulement si, tout intervalle ouvert contenant?contient tous les termes de la suite à partir d"un certain rang.

On note alors : lim

n→+∞un=?et l"on dit que la suiteconvergevers? On dit que la suite(un)a pour limite+∞(resp.-∞) si, et seulement si, tout intervalle ]A;+∞[(resp.]-∞;B[) contient tous les termes de la suite à partir d"un certain rang.

On note alors : lim

n→+∞un= +∞resp. limn→+∞un=-∞ On dit que la suitedivergevers+∞(resp.-∞) 6 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE Soit trois suites(un),(vn)et(wn). Si à partir d"un certain rang, on a :

Théorème d"encadrement ou "des gendarmes"

v n?un?wnet si limn→+∞vn=limn→+∞wn=?alors limn→+∞un=?

Théorème de comparaison

•un?vnet si limn→+∞vn= +∞alors limn→+∞un= +∞ •un?wnet si limn→+∞wn=-∞alors limn→+∞un=-∞ Suites géométrique :soitqun réel. On a les limites suivantes :

•Siq>1 alors limn→+∞qn= +∞

•Siq=1 alors limn→+∞qn=1

•Si-1

•Siq?-1 alors limn→+∞qnn"existe pas

3 Opérations sur les limites

3.1 Limite d"une somme

Si(un)a pour limite???+∞-∞+∞

Si(vn)a pour limite??+∞-∞+∞-∞-∞ alors(un+vn)a pour limite?+??+∞-∞+∞-∞F. Ind.

3.2 Limite d"un produit

Si(un)a pour limite???=00∞

Si(vn)a pour limite??∞∞∞

alors(un×vn)a pour limite?×??∞F. ind.∞

3.3 Limite d"un quotient

Si(un)a pour limite???=00?∞∞

Si(vn)a pour limite???=000∞??∞

alors?unvn? a pour limite ??∞F. ind.0∞F. ind. 7 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE

4 Convergence d"une suite monotone

Définition 3 :On dit que la suite(un)estmajoréesi, et seulement si, il existe un réelM tel que :?n?Nun?M On dit que la suite(un)estminoréesi, et seulement si, il existe un réelmtel que : ?n?Nun?m Si(un)est majorée et minorée, on dit que la suite estbornée.

Divergence

•Si une suite(un)estcroissante et non majoréealors la suite(un)diverge vers+∞. •Si une suite(un)estdécroissante et non minoréealors la suite(un)diverge vers-∞.

Convergence

•Si une suite(un)estcroissante et majoréealors la suite(un)converge. •Si une suite(un)estdécroissante et minoréealors la suite(un)converge.

Théorème du point fixe

Soit une suite(un)définie paru0etun+1=f(un)convergente vers?. f(x) =x.

Exemple

Calculer la limite de la suite(un)définie paru0=1 etun+1=⎷ 2+un. On peut montrer par récurrence que la suite (un)est croissante et que pour toutn, 0? u n?2 La suite(un)est alors croissante et majorée par 2, elle est donc convergente vers une limite

La fonctionftelle que :f(x) =⎷

2+xest définie et continue sur]-2;+∞[. Comme la

suite(un)est convergente vers?, d"après le théorème du point fixe,?verifie l"équation?=⎷

2+?. En élevant au carré, on trouve :?2-?-2=0 qui admet deux solutions-1 et 2. Comme la suite(un)est positive, elle converge donc vers 2. 8 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE 9quotesdbs_dbs12.pdfusesText_18