[PDF] Fonctions réciproques



Previous PDF Next PDF







Fonctions réciproques

11 1 Fonctions réciproques 11 1 1 Fonction réciproque – Dé finition Il arrive souvent que, pour une fonction donnée f, on a besoin (si c’est possible) d’une autre fonction gtelle



Chapitre 2 : Fonction réciproque

Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés UE4 : Evaluation des méthodes d’analyses appliquées aux sciences de la vie et de la santé – Analyse





La fonction réciproque Prof Smail BOUGUERCH

Alors la fonction réciproque 1 f est dérivable en y0 et on a : 1 0 1 00 11 ( ) ( (y )) fy f x f f c cc Soit une fonction continue et strictement monotone sur un intervalle Si ]À o µ o[]v Àoo I et sa fonction dérivée fc v [ annule pas sur cet intervalle I Alors la fonction réciproque 1 f ]À o µ o[]v Àoo Et on a : 1 1 1 ( ) ; (x) f (x



Fonctions trigonométriques réciproques

Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] → [-2 π; 2 π] x arcsin(x) avec l’équivalence : y = arcsin(x) ⇔ x = sin(y) La représentation graphique Γf −1 d’une fonction f-1, réciproque d’une application f bijective est toujours



Chapitre X : Matrice inverse et réciproque d’une application

Réciproque d’une fonction L’existencedef 1 impliquequef estinjective Eneffet,s’ilexiste deuxnombresx ety telsquef(x) = f(y) := z,commentfaire



Notions de fonction - WordPresscom

Ensembles de dé nition Exemples d'ensembles de dé nition de fonctions usuelles (pas de fonc-tion trigonométrique réciproque pour l'instant) Exemples et exercices b) Image directe, réciproque et restriction: Dé nitions: image directe et réciproque d'un ensemble Restriction d'une fonction à un sous ensemble Exemples et exercices



Chapitre III D´erivabilit´e d’une bijection r´eciproque

La fonction f, repr´esent´ee graphiquement ci-dessous, est d´efinie et continue sur l’intervalle [1,9] Elle v´erifie donc les hypoth`eses du th´eor`eme des valeurs interm´ediaires



Fiche de révision - mathoxnet

Fonction logarithme népérien 1 Vers une nouvelle fonction 1 1 Bijection onctionF réciproque Dé nition : Soit Iet Jdeux intervalles de R Une fonction fde Idans Jest une bijection de Isur Jsi : pour tout réel xde I, son image par f, f(x) est dans J; pour tout réel yde J, il existe un unique xdans Iantécédent de ypar f



Chapitre 6 Fonction logarithme népérien

La fonction logarithme népérien est la fonction dé nie sur ]0;+1[ par f(x) = ln(x) Remarque La fonction logarithme népérien est la fonction réciproque de la fonction exponentielle Propriété 1 ex = a ()x = ln(a) Pour tout a > 0, eln(a) = a Pour tout x 2R, ln(ex) = x ln(1) = 0 et ln(e) = 1 2 Propriétés algébriques

[PDF] activité réciproque du théorème de pythagore

[PDF] musique de film youtube

[PDF] pythagore 3eme exercices

[PDF] activité 2nd degré

[PDF] recherche musique de film

[PDF] musique de film compositeur

[PDF] redaction thales

[PDF] l'influence de la musique sur les capacités cognitives

[PDF] bienfaits de la musique sur le cerveau

[PDF] musique et éducation

[PDF] les bénéfices de la musique

[PDF] musique et mémorisation

[PDF] les bienfaits de la musique sur l'homme

[PDF] objectif du chant ? l école

[PDF] les bienfaits de l'enseignement de la musique

Fonctions réciproquesy=f(x)

XY x = g(y)=f (y) -1 x=messagey=message codécodage décodagex=message

B. Aoubiza

IUT Belfort-Montbéliard

Département GTR

6 janvier 2003

Table des matières

11.1Fonctionsréciproques .......................................... 3

11.1.1 Fonction réciproque - Définition................................ 3

11.1.2Fonctionréciproque-Domaineetdomaineimage...................... 4

11.1.3Fonctionréciproque-Déterminationdelafonctionréciproque............... 4

11.1.4Fonctionréciproque-Propriétédecontinuité ........................ 5

11.1.5Fonctionréciproque-Graphe................................. 5

11.1.6Fonctionréciproque-Dérivée................................. 6

11.1.7Fonctionréciproque-unthéorèmed'existence........................ 7

11.2Fonctionstrigonométriquesréciproques................................. 7

11.2.1 Fonction réciproque desin - Définition............................. 7

11.2.2 Fonction réciproque desin - Propriétés ............................ 8

11.2.3 Fonction réciproque desin - Graphe.............................. 8

11.2.4 Fonction réciproque desin - Dérivée.............................. 9

11.2.5 Fonction réciproque decos - Définition ............................ 9

11.2.6 Fonction réciproque decos - Propriétés ............................ 9

11.2.7 Fonction réciproque decos - Graphe.............................. 10

11.2.8 Fonction réciproque decos - Dérivée.............................. 10

11.2.9Relationfondamentale...................................... 11

11.2.10Fonction réciproque detan - Définition ............................ 11

11.2.11Fonction réciproque detan - Propriétés ............................ 11

11.2.12Fonction réciproque detan - Graphe.............................. 12

11.2.13Fonction réciproque detan - Dérivée.............................. 12

11.2.14Fonction réciproque decot - Définition ............................ 13

11.2.15Fonction réciproque decot - Propriétés ............................ 13

11.2.16Fonction réciproque decot - Graphe.............................. 14

11.2.17Fonction réciproque decot - Dérivée.............................. 14

11.2.18Fonctionstrigonométriquesréciproques - Résumé....................... 14

11.3 Fonctions exponentielles de base................................... 15

11.3.1 Fonctions exponentielles de base - Propréités........................ 15

11.3.2 Fonctions exponentielles de base - Graphe.......................... 15

11.4 Fonction exponentielle de base.................................... 16

11.4.1 Fonction exponentielle - Définition............................... 16

11.4.2Fonctionexponentielle - Propriétésetlimitesusuelles .................... 17

11.4.3Fonctionexponentielle - Graphe ................................ 17

11.4.4Fonctionexponentielle - Dérivée ................................ 18

11.4.5Fonctionexponentielle - Dérivéedelacomposée ....................... 18

11.5Fonctionshyperboliques......................................... 19

11.5.1 Fonctions hyperboliques - Définitions ............................. 19

11.5.2 Fonctions hyperboliques - Fonctioncosh............................ 19

11.5.3 Fonctions hyperboliques - Fonctionsinh............................ 20

11.5.4Fonctionshyperboliques - Relationfondamentale....................... 20

11.6Fonctionshyperboliquesréciproques .................................. 20

11.6.1 Fonction réciproque decosh - Définition............................ 20

11.6.2 Fonction réciproque decosh - Propriétés............................ 21

11.6.3 Fonction réciproque decosh - Graphe ............................. 21

1

11.6.4 Fonction réciproque decosh - Dérivée............................. 21

11.6.5 Fonction réciproque desinh - Définition............................ 21

11.6.6 Fonction réciproque desinh - Propriétés............................ 22

11.6.7 Fonction réciproque desinh - Graphe ............................. 22

11.6.8 Fonction réciproque desinh - Dérivée ............................. 22

11.7 Fonction logarithme........................................... 23

11.7.1 Fonction logarithme - Définition ................................ 23

11.7.2 Fonction logarithme - Graphe.................................. 23

11.7.3 Fonction logarithme - Propriétés . ............................... 23

11.7.4 Fonction logarithme - Dérivée . . ............................... 25

11.7.5 Fonction logarithme - Dérivéeln(())............................ 25

11.8 Fonctions logarithme de base(0)................................. 27

11.8.1 Fonctions logarithme de base - Définition.......................... 27

11.8.2 Fonctions logarithme de base - Propriétés.......................... 27

11.8.3 Fonctions logarithme de base - Changementdebase.................... 27

11.8.4 Fonctions logarithme de base - Dérivation.......................... 28

11.9 Fonctions exponentielles de base................................... 28

11.9.1 Fonctions exponentielles de base - Nouvelleformulation.................. 28

11.9.2 Fonctions exponentielles de base - Dérivation........................ 28

11.10Fonctionspuissances........................................... 28

11.10.1Fonctions puissances - Définition................................ 28

11.10.2Fonctionspuissances - Dérivée ................................. 29

11.10.3Fonctionspuissances - Graphes................................. 29

11.11Comparaisondescroissances....................................... 29

2

11.1 Fonctions réciproques

11.1.1 Fonction réciproque - Définition

Il arrive souvent que, pour une fonction donnée, on a besoin (si c'est possible) d'une autre fonctiontelle

que : yfgxx Dèfinition 1(Fonctions réciproque)Siest une application dedansetest une application de danstelles que - (()) =pour tout - (()) =pour tout on dit queest la fonctionréciproquede,etqueest la fonctionréciproquede.

Notation 1La fonction réciproque dese note

1 y=f x()

XYx = g yf y() = ()

-1 xy Exemple 1Soientetles deux fonctions définies par :[0+[[0+[ 7 2 et:[0+[[0+[ 7 Ces deux fonctions vérifient les relations suivantes : 2 =pour tout[0+[ 2 2 =pour tout[0+[ Doncest la fonctionréciproquede,etest la fonctionréciproquede.

Dèfinition 2(Fonction Bijective)une fonctionestbijectivesur un domaine (intervalle) si chaque fois

que( 1 2 ),alors 1 2 Remarque 1Rappelons que toute fonction bijective admet une fonction réciproque.

Exemple 2Montrer que la fonction()=

3 est bijective.

Solution :Montrons que si(

1 2 )alors 1 2

Soient

1 et 2 deux réels quelconques tels que( 1 2 ).Ona 31
32
et donc 31
32
=0 or 31
32
1 2 21
1 2 22
)=0 Le produit est nul si l'un des facteurs est nul. On déduit donc que 1 2 car 21
1 2 22
ne peut pas être nul dansR. (dire pourquoi?)

Exemple 3La fonction()=

2 définie pour tout réel, n'est pas bijective car(1) =(1)mais16=1. 3

Test de la droite horizontale

Une fonctionestbijectivesi et seulement si toute droite horizontale ne peut rencontrer qu'au plus en un point.

Fonction bijective

Même image pour 2 valeurs

différentes x 2 x 11 f( )x 2 f( ) x 11

Fonction non bijective

11.1.2 Fonction réciproque - Domaine et domaine image

On déduit facilement les relations suivantes entre ledomaine imageet ledomainede définition : domaine de 1 =domaine image de domaine image de 1 =domaine de

11.1.3 Fonction réciproque - Détermination de la fonction réciproque

Pour déterminer la fonction réciproque de=():

1. Résoudre l'équation=()où l'inconnue est, on obtient alors=().

2. Remplacerparetpardans l'expression=()pour obtenir

1

Exemple 4Soit()=

2 pour0. Déterminer sa fonction réciproque.

Solution: On résout l'équation

2 0 où l'inconnue est,onobtient 0

Maintenant on remplaceparetparon obtient

0

Ainsi, la fonction réciproque

1 ()de()= 2 ,pour0, est la fonction racine carrée : 1 Point de vue graphique. Si on regarde le graphe de= 2 ,pourtouton voit que cette fonction ne peut pas avoir de réciproque pour tout. 02468
-4 -2 2 4 x 2 Noter que la droite horizontale=4coupe la courbe de= 2 en deux points. Ce qui signifiequelafonction n'est pas bijective et donc elle n'admet pas de fonction réciproque. 4

11.1.4 Fonction réciproque - Propriété de continuité

Théorème 1Siest une fonction bijective continue sur un intervalle, alors sa fonction réciproque

1 est aussi continue.

11.1.5 Fonction réciproque - Graphe

Théorème 2Les courbes des fonctionset de sa réciproque 1 sont symétriques par rapport à la droite Preuve.Lapentededroitepassantparlespointes()et()est donnée par e=1 Ce qui signifie que cette droite est orthogonale à la droite=de pente1En utilisant des arguments géométriques :(\)=(\)est donc les trianglesetsont "semblables", on déduit que y=f x()() b,a x ()a,b y=fx -1 y y=x B O A C Ce qui signifiequeest le symétrique depar rapport à la première bissectrice=.

Exemple 5Lesgraphesdesfonctions

2 ,,et. y=x y y=x 2 y=x x

Courbes de

2 ,,et Exemple 6Déterminer la fonction réciproque de=4+1et tracer son graphe. Solution :Résolvons l'équation=4+1où l'inconnue est: =4+1 =(1)4=1 414

Maintenant on remplaceparetparon obtient

=1 414

Ainsi,

1 1 4 1 4 . Les courbes deet de 1 sont symétriques par rapport à= 5 xy= x+ 41
y y=x y= x- 1414
Exemple 7Déterminer la fonction réciproque de()= 2 pour0et tracer sa courbe. Solution :Résolvons l'équation où l'inconnue est 2 0 on obtient 0

Maintenant on remplaceparetparon obtient

0

Ainsi,

1 ()==pour0. Les courbes deet de 1 sont symétriques par rapport à= y=x x y=x 2 y=xy

Courbes de

2 ,et

11.1.6 Fonction réciproque - Dérivée

Notons que siest bijective, alors elle admet une fonction réciproque 1 . Ces deux fonctions vérifient la relation suivante : 1 ()) =et 1 Ainsi, en dérivant des deux côtés, on obtient 1 0 =1 et en utilisant la relation de la dérivation des fonctions composées : 0 0 0 on déduit que 1 0 0 1 1 0 ()=1 d'où 1 0 ()=1 0 1 6 Exemple 8Déterminer la dérivée de la fonction réciproque de()= 3 Solution :La fonction réciproque est donnée par 1 13

Sachant que

0 ()=3 2 et que( 1 0 1 0 1quotesdbs_dbs41.pdfusesText_41