[PDF] Q ( UADRILATERES



Previous PDF Next PDF







Comment d montrer quun quadrilat re est

COMMENT DEMONTRER QU’UN QUADRILATERE EST UN RECTANGLE ? Vous disposez de trois méthodes Méthode 1 : ( Propriété concernant les côtés ) Il suffit de démontrer que le quadrilatère est un parallélogramme a un angle droit ( c’est à dire deux côtés perpendiculaires ) Exercice d’application : ( Exercice 1 )



MONTRER QUE LE QUADRILATÈRE EST UN LOSANGE

" Si un quadrilatère a ses diagonales qui se coupent en leur milieu et sont perpendiculaires, ALORS c’est un losange " • Je conclus que : JOLI est un losange EXEMPLE : MONTRER QUE LE QUADRILATÈRE JOLI EST UN LOSANGE 1- Construis un triangle PME rectangle en M avec PM = 2 cm et ME = 4 cm



Q ( UADRILATERES

-Si un quadrilatère est un rectangle alors c’est un parallélogramme (il en possède donc toutes les propriétés) -Si un quadrilatère est un rectangle alors ses deux diagonales sont de même longueur -Si un quadrilatère est un rectangle alors il a deux axes de symétrie, les perpendiculaires à ses côtés en leur milieu b) Losange



COURS QUADRILATERES

Définition: Un carré est un quadrilatère ayant 4 côtés de même longueur et 4 angles droits Un carré est à la fois un rectangle et un losange (d’après les définitions) Un carré a donc toutes les propriétés du rectangle et du losange Pour montrer qu’un quadrilatère est un carré, il faut montrer que c’est un



Chapitre 02 : Quadrilatères particuliers

Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles Propriétés Si un quadrilatère est un parallélogramme, alors (1) ses diagonales se coupent en leur milieu (2) ses côtés opposés sont parallèles (3) ses angles opposés ont la même mesure ♦ Démontrer qu'un quadrilatère est un



Outils de démonstration - Académie de Poitiers

Si un quadrilatère est un parallélogramme alors ses côtés opposés sont de même longueur Si un quadrilatère est un rectangle alors ses côtés opposés sont de même longueur Si un quadrilatère est un losange alors ses quatre côtés sont de même longueur Si un quadrilatère est un carré alors ses quatre côtés sont de même longueur



Parallélogrammes cours à trous

un losange ( car il a quatre côtés de même longueur ), pour montrer qu’un quadrilatère est un carré, on peut montrer qu’il est à la fois un losange et un rectangle III) Exemple d’une démonstration : On rappelle qu’en géométrie, une démonstration doit être écrite sous la forme suivante :



[PDF] montrer qu'un triangle est rectangle avec les nombres complexes

[PDF] montrer qu'un triangle est rectangle repère orthonormé

[PDF] montrer qu'une courbe admet un centre de symétrie

[PDF] montrer qu'une courbe admet une asymptote oblique

[PDF] montrer qu'une droite et un plan sont sécants

[PDF] montrer qu'une equation admet une solution unique

[PDF] montrer qu'une fonction admet un maximum

[PDF] montrer qu'une fonction admet un point fixe

[PDF] montrer qu'une fonction est convexe

[PDF] montrer qu'une fonction est dérivable sur un intervalle

[PDF] montrer qu'une fonction est majorée

[PDF] montrer qu'une matrice est diagonalisable

[PDF] montrer qu'une matrice est inversible et calculer son inverse

[PDF] montrer qu'une matrice est nilpotente

[PDF] montrer qu'une relation d'ordre est totale

QUADRILATERES (NON CROISES) PARTICULIERS

I CE QUIL FAUT SAVOIR DES QUADRILATERES PARTICULIERS

1. Trapèze

Définition : Un trapèze est un quadrilatère qui a deux côtés parallèles. Remarque : Un trapèze possédant un angle droit est dit rectangle.

2. Parallélogramme

Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles deux à deux.

Propriétés :

- Si un quadrilatère est un parallélogramme alors ses côtés opposés sont parallèles deux à deux.

- Si un quadrilatère est un parallélogramme alors ses côtés opposés sont deux à deux de même longueur.

- Si un quadrilatère est un parallélogramme alors le point de concours de ses deux diagonales est son centre de symétrie.

- Si un quadrilatère est un parallélogramme alors ses diagonales se coupent en leur milieu.

- Si un quadrilatère est un parallélogramme alors ses angles opposés sont deux à deux de même mesure (et ses angles

consécutifs sont supplémentaires).

3. Parallélogrammes particuliers

a) Rectangle Définition : Un rectangle est un quadrilatère qui a trois angles droits.

Propriétés :

- Si un quadrilatère est un rectangle alors il a quatre angles droits. - Si un quadrilatère est un rectangle alors - Si un quadrilatère est un rectangle alors ses deux diagonales sont de même longueur.

- Si un quadrilatère est un rectangle alors il a deux axes de symétrie, les perpendiculaires à ses côtés en leur milieu.

b) Losange Définition : Un losange est un quadrilatère qui a ses côtés de même longueur.

Propriétés :

- Si un quadrilatère est un losange alors il a quatre côtés de même longueur. - Si un quadrilatère est un losange alors - Si un quadrilatère est un losange alors ses deux diagonales sont perpendiculaires. - Si un quadrilatère est un losange alors ses deux diagonales sont ses axes de symétrie. c) Carré Définition : Un carré est un quadrilatère qui est à la fois un rectangle et un losange. Propriété : Si un quadrilatère est un carré alors

4. Illustrations des quadrilatères particuliers

Trapèze Parallélogramme Parallélogrammes particuliers

Rectangle Losange Carré

Les côtés en gras

sont parallèles.

Pour les quatre parallélogrammes ci-dessus, O est le centre de symétrie, les droites en

pointillés sont les axes de symétrie et enfin, les côtés opposés sont parallèles deux à deux.

O O O O II LES OUTILS POUR DEMONTRER QUUN QUADRILATERE EST PARTICULIER

1. Trapèze

Propriété : Si un quadrilatère possède deux côtés parallèles alors

2. Parallélogramme

Propriétés :

- Si un quadrilatère a ses côtés opposés parallèles deux à deux alors - Si un quadrilatère a ses côtés opposés deux à deux de même longueur alors parallélogramme.

- Si un quadrilatère a deux de ses côtés opposés parallèles et de même longueur alors

parallélogramme. - Si -à-dire un centre de symétrie) alors - Si un quadrilatère a ses angles opposés deux à deux de même mesure alors parallélogramme.

3. Parallélogrammes particuliers

a) Rectangle

Propriétés

- Si un quadrilatère a trois angles droits (au moins) alors - Si un quadrilatère a des diagonales de même longueur et qui se coupent en leur milieu alors le.

Propriétés

- Si un parallélogramme a un angle droit alors - Si un parallélogramme a des diagonales de même longueur alors b) Losange

Propriétés

- Si un quadrilatère a quatre côtés de même longueur alors - Si un quadrilatère a des diagonales qui se coupent perpendiculairement et en leur milieu alors

Propriétés

- Si un parallélogramme a deux côtés consécutifs de même longueur alors - Si un parallélogramme a des diagonales perpendiculaires alors c) Carré

Propriétés

- Si un quadrilatère a trois angles droits (au moins) et deux côtés consécutifs de même longueur

alors - Si un quadrilatère a trois angles droits (au moins) et des diagonales perpendiculaires alors un carré.

- Si un quadrilatère a des diagonales de même longueur et qui se coupent en leur milieu et deux

côtés consécutifs de même longueur alors - Si un quadrilatère a des diagonales de même longueur et qui se coupent en leur milieu et perpendiculaires alors - Si un quadrilatère est à la fois un rectangle et un losange alors

Propriétés

- Si un parallélogramme a un angle droit et deux côtés consécutifs de même longueur alors

un carré. - Si un parallélogramme a un angle droit et des diagonales perpendiculaires alors

- Si un parallélogramme a des diagonales de même longueur et deux côtés consécutifs de même

longueur alors - Si un parallélogramme a des diagonales de même longueur et perpendiculaires alors carré.

Propriétés : (en part

- Si un rectangle a deux côtés consécutifs de même longueur alors - Si un rectangle a des diagonales perpendiculaires alors

Propriétés

- Si un losange a un angle droit alors carré. - Si un losange a des diagonales de même longueur alorsquotesdbs_dbs47.pdfusesText_47