[PDF] TD7 : formes quadratiques - DMA/ENS



Previous PDF Next PDF







cours FORME QUADRATIQUE

La matrice de la forme quadratique q s’écrit alors 1,2 1, 1,1 1,2 2,2, 1, 1, 1,; 2 2 2 2 2 2 n n n n n n n n a a a a a a a a a--æ ö ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ç ÷ Ł ł L L M O M O Exemple : Soit l’applicationq définie sur ¡3 par :q x y z x z xy yz(, , 2 2 4) = + + +2 2 On reconnaît la forme



Chapitre 5 Formes quadratiques et matrices sym´etriques

respond la forme quadratique $ X" $2= X " X" qui est la norme carr´ee (la longueur carr´ee) du vecteur X" Demˆeme, b a f2(x)dx est une norme carr´ee pour les fonctions (de carr´e int´egrable) sur (a,b) Th´eor`eme de Pythagore Soitf une forme bilin´eaire sym´etrique, Q la forme quadratique associ´ee, on a pour toute paire de vecteurs



Formes quadratiques r eelles Exemples et applications

la forme quadratique ne d epend pas de la base choisie En e et, deux 6= 0 ,q est non-d eg en er ee ou M est la matrice associ ee a la forme quadratique q Exemples :



Formes quadratiques - wwwnormalesuporg

Une forme quadratique q est dite positive si elle ne prend que des valeurs positives, i e si pour tout vecteur x on a q(x) 0; jusque là, la terminologie est claire Maintenant, une matrice auto-adjointe sera dite positive si la forme quadratique associØe l™est, i e si pour tout vecteur x on a x Ax 0 4



EXERCICES formes quadratiques - WordPresscom

EXERCICE 2 : matrice associée à une forme quadratique On définit une forme quadratique q sur ¡3 en posant, pour tout vecteur u x y z=(, ,) de coordonnées x X y z æ ö ç ÷ = ç ÷ ç ÷ Ł ł dans la base canonique C de¡3: 1) q x y z x y z xy xz yz(, , 7 5 3 4 2 6) = - + - + -2 2 2, déterminer une matrice symétrique A˛M3 (¡)telle



C H A P I T R E 2 F O R M E S Q U A D R A T I Q U E S

2 Représentation d’une forme quadratique dans une base E dim finie, muni d’une ase DEFINITION 14 : REPRESENTATION MATRICIELLE On appelle matrice associée à q dans B la matrice de sa forme polaire PROPOSITION 15 : Soit q forme quadratique représentée par A dans



TD7 : formes quadratiques - DMA/ENS

La forme f n’a aucune droite isotrope si et seulement si elle est anisotrope (par d e nition) Or il existe une forme quadratique anisotrope sur P si et seulement si le corps K n’est pas quadratiquement clos : il su t de consid erer la forme f(x;y) = x2 y2 sur K2, ou 2 K n(K)2 En particulier, ce cas n’arrive pas sur un corps alg



Cours de Mathématiques

est une forme quadratique Elle est appelée forme quadratique engendrée par la forme bi-linéaire symétrique f Démonstration La démonstration découle directement de la dé finition ¤ 3 2 Représentation matricielle d’une forme quadratique Si E est de dimen-sion finie, une représentation matricielle de q sera celle de la forme



[PDF] montrer que q est une forme quadratique

[PDF] dessin industriel cours pdf

[PDF] coupes et sections dessin technique exercices corrigés

[PDF] bases du dessin technique pdf

[PDF] dessin technique

[PDF] cours et exercices avec solutions

[PDF] dessin technique exercices corrigés pdf

[PDF] cours de dessin technique mécanique pdf

[PDF] cours d'échographie gratuit

[PDF] manuel d'échographie

[PDF] cours echographie abdominale pdf

[PDF] prf doppler

[PDF] principe d'échographie

[PDF] cryptography engineering design principles and practical applications

[PDF] cryptographie pdf

Ecole Normale Superieure 1ere annee

Ann ee 2015-2016 Algebre 1

TD7 : formes quadratiques

Exercices?: a preparer a la maison avant le TD, seront corriges en debut de TD. Exercices??: seront traites en classe en priorite.

Exercices? ? ?: plus diciles.

Exercice 1 :?

Decomposer sous forme de combinaison lineaire de carres les formes quadratiques reelles suivantes; en

deduire leur signature et leur rang. a)f(x;y;z) =x22y2+xz+yz. b)f(x;y;z) = 2x22y26z2+ 3xy4xz+ 7yz. c)f(x;y;z) = 3x2+ 3y2+ 3z22xy2xz2yz. d)f(x;y;z;t) =xy+yz+zt+tx: e)f(x1;:::;xn) =P

1i f)f(A) = tr(A2), pourA2Mn(R). g)f(A) = tr(tAA), pourA2Mn(R). h)f(A) = tr(A)2, pourA2Mn(R).

Solution de l'exercice1. On applique l'algorithme de Gauss pour diagonaliser la plupart de ces formes

quadratiques. On obtient : a)f(x;y;z) =x+z2 22yz4
2z28 . Donc sign(f) = (1;2) et rang(f) = 3. b)f(x;y;z) = 2x+34 yz2258 y85 z2. Donc sign(f) = (1;1) et rang(f) = 2. c)f(x;y;z) = 3x+y3 z3 2+83 yz2

22z2. Donc sign(f) = (2;1) et rang(f) = 3.

d)f(x;y;z) =14 (x+z+y+t)214 (x+zyt)2. Donc sign(f) = (1;1) et rang(f) = 2. e) On peut par exemple remarquer que la matrice associee afdans la base canonique admet pour valeurs propres12 avec multipliciten1 (avec des vecteurs propres de la formeeie1,

2in, ou (ei) est la base canonique) etn12

avec mutiplicite 1 (utiliser la trace). Donc on en deduit que sign(f) = (1;n1) et rang(f) =n. f) La forme polaire defest la forme bilineaire symetrique (A;B)7!tr(AB). On remarque que la restriction defau sous-espaceSn(R) des matrices symetriques est denie positive, alors que la restriction defau sous-espaceAn(R) des matrices antisymetriques est denie negative. En outre, ces deux sous-espaces sont en somme directe et engendreMn(R), et ils sont orthogonaux pourq. Cela assure que sign(q) = (dim(Sn(R));dim(An(R))) =n(n+1)2 ;n(n1)2 et rang(f) = n

2. On peut aussi trouver directement la decomposition en carres en remarquant que siA=

(ai;j), on a f(A) =X i;ja i;jaj;i=X ia

2i;i+ 2X

i2i;i+12

X iExercice 2 : Soitn1 et soitRn[X] l'espace vectoriel des polyn^omes reels de degre inferieur ou egal an. Pour tousP;Q2Rn[X], on pose :

B(P;Q) =Z

1 0 tP(t)Q0(t)dtetf(P) =B(P;P): a) Montrer queBest une forme bilineaire. Est-elle symetrique? Antisymetrique? b) La formefa-t-elle des vecteurs isotropes non nuls? c) Calculer la matrice defdans la base (1;X;:::;Xn). d) Pourn= 2, determiner la signature def. La formefest-elle positive? Negative?

Solution de l'exercice2.

a) La linearite de l'integrale assure queBest bilineaire. On aB(1;X) = 1=2 etB(X;1) = 0 et doncBn'est ni symetrique ni antisymetrique. b) On af(1) = 0 et donc 12Rn[X] est un vecteur isotrope. c) Notons que la forme polaire defn'est pasBmais sa symetrisee, a savoir B s(P;Q) :=12 (B(P;Q) +B(Q;P)): Un petit calcul assure que la matrice def(i.e. deBs) dans la base indiquee estMn=i+j22(i+j1)

1i;jn.

d) La signature est (1;2).

Exercice 3 :?

SoitKun corps de caracteristique dierente de 2. SoitPunK-espace vectoriel de dimension 2, muni d'une forme quadratiquef. Quelles sont valeurs possibles pour le nombre de droites isotropes def?

Donner un exemple dans chaque cas.

Solution de l'exercice3.

| La formefn'a aucune droite isotrope si et seulement si elle est anisotrope (par denition). Or il existe une forme quadratique anisotrope surPsi et seulement si le corpsKn'est pas quadratiquement clos : il sut de considerer la formef(x;y) =x2y2surK2, ou2 K n(K)2. En particulier, ce cas n'arrive pas sur un corps algebriquement clos. | La formefa une unique droite isotrope si et seulement si rang(f) = 1. Ceci arrive sur tout corpsK, il sut de considerer par exemple la forme quadratiquef(x;y) =x2surK2(la seule droite isotrope est la droite d'equationx= 0). | La formefa exactement deux droites isotropes si et seulement si elle est hyperbolique, i.e. non degeneree et admettant un vecteur isotrope. Une telle forme existe sur tout corpsK, comme le montre l'exemplef(x;y) =x2y2surK2(droites isotropes d'equationsx+y= 0 etxy= 0). | Supposons que la formefait au moins 3 droites isotropes. Notons alorsv1;v2;v3trois vecteurs isotropes deux-a-deux non proportionnels. Puisque (v1;v2) est une base deP, il existe;2K tels quev3=v1+v2. On applique la formef, et si on notebla forme polaire def, on obtient

0 =f(v3) =f(v1+v2) =2f(v1) +2f(v2) + 2b(v1;v2) = 2b(v1;v2):

Doncb(v1;v2)6= 0, donc la matrice defdans la base (v1;v2) est la matrice nulle (c'est une base orthogonale formee de vecteurs isotropes), doncf= 0. Finalement, une forme quadratique sur un plan vectoriel admet soit aucune droite isotrope, soit une

droite isotrope, soit deux droites isotropes, soit toutes les droites dePsont isotropes. Tous ces cas

arrivent sur tout corpsK, sauf le premier (aucune droite isotrope) qui existe si et seulement siKn'est

pas quadratiquement clos.

Exercice 4 :??

SoitKun corps de caracteristique dierente de 2 et soitEunK-espace vectoriel de dimension nie. Soientfetf0des formes quadratiques surEveriantf1(0) = (f0)1(0). 2 a) SupposonsKalgebriquement clos. Montrer qu'il existea2Ktel que l'on aitf0=af. b) Donner un contre-exemple pourK=RetE=R2.

Solution de l'exercice4.

a) Soientbetb0les formes bilineaires respectives defetf0. Sifest totalement isotrope, le resultat est clair. Supposons que ce ne soit pas le cas : il existex2Eavecf(x)6= 0. Posons a=f0(x)f(x)12K. Soity2E. Les polyn^omesaf(y+x) etf0(y+x) deK[] sont de degre 2, ont m^emes racines par hypothese, et ils ont m^eme coecient dominantf0(x) : ils sont donc egaux puisqueKest algebriquement clos. En particulier, on af0(y) =af(y). Donc f 0=af. b) Il sut de considerer les formes quadratiquesx2+y2etx2+ 2y2.

Cet exercice est un cas tres particulier du theoreme des zeros de Hilbert (le Nullstellensatz de Hilbert) :

soitKun corps algebriquement clos,IK[X1;:::;Xn] un ideal et notonsZ(I) l'ensemble des zeros communs a tous les polyn^omes deI. Sifest un polyn^ome qui s'annule surZ(I), alors il existen2N tel quefn2I.

Exercice 5 :??

SoitKun corps de caracteristique dierente de 2, soitEunK-espace vectoriel de dimension nie non nulle et soitHun hyperplan deE. Soient de plusfune forme quadratique non degeneree surEetu un element deO(E;f) veriantujH= idH. a) SifjHest non degeneree, montrer queuest soit l'identite, soit la re exion orthogonale d'hy- perplanH. b) SifjHest degeneree, montrer queuest l'identite. Solution de l'exercice5. Notonsbla forme bilineaire associee af. a) SifjHest non degeneree, l'orthogonal deHpourbest un supplementaire deH, de dimension

1, disons egal aKx. Alorsb(u(x);u(h)) =b(x;h) = 0 pour touth2H, ce qui assure que

u(x)2Kxetf(u(x)) =f(x) donneu(x) =x(carf(x)6= 0 puisquex =2H?). Doncu= id ouuest la re exion orthogonale (i.e. parallelement aH?) d'hyperplanH. b) SifjHest degeneree, il existeh2H?\Hnon nul. On peut le completer en un plan hyperbolique (au passage, commeH?est de dimension 1, cela forceH?\Ha ^etre egal aH?) gr^ace a un y =2H. Ecrivonsu(y) =y+h0avec2Keth02H. On a 1 =b(y;h) =b(u(y);u(h)) = etb(u(y)y;n) = 0 pour toutn2H. On peut donc ecrireu(y) =y+h. Mais alors on a f(y) + 2=f(u(y)) =f(y), d'ou= 0. Doncu= id.

Exercice 6 :

Soitn1 et soitE=Rn+1muni de la forme quadratique

f(x0;:::;xn) =x20(x21++x2n); de forme bilineaireb. Un sous-espaceFdeEest ditelliptiquesifjFest denie negative,hyperbolique sifjFest de signature (1;m) avecm1 etparaboliquesiFest isotrope. a) SoitFun sous-espace de dimension au moins 2 tel qu'il existex2Favecf(x)>0. Montrer queFest hyperbolique. b) SoitFun sous-espace elliptique de dimension au plusn1. Montrer queF?est hyperbolique. c) SoitFun sous-espace parabolique. Montrer quefjFest de rang dimF1.

Solution de l'exercice6.

a) C'est evident. Montrons m^eme quefjFest non degeneree. Supposons le contraire : il existe t2F\F?non nul. On a alorsf(x+t) =f(x)>0 et la restriction defau plan engendre parxettest denie positive, ce qui contredit le fait que sign(f) = (1;n). DoncfjFest non degeneree, ce qui assure que sign(f) = (1;dimF1). 3 b) Supposonsf(t0)0 pour toutt02F?. Comme on aE=FF?(pas de vecteur isotrope dansF), ecrivons tout elemente=t(e) +t0(e) suivant cette decomposition. On aurait alors f(e) =f(t(e))+f(t0(e))0, ce qui n'est pas vrai pour (1;0;:::;0). De ce fait, il existex2F? avecf(x)>0 et on applique la question a). c) SupposonsfjFde rangdimF2. AlorsfjFpossede deux vecteurs isotropes qui se completent en deux plans hyperboliques distincts dansE. OrEne contient pas de somme directe de deux plans hyperboliques (sinon sa signature serait (p;q) avecp2). L'hypothese initiale est donc erronee.

Exercice 7 :??

Soientp6=qdeux nombres premiers impairs. On notepq l'entier qui vaut 1 sipest un carre modulo qet1 sinon. On noteS:=f(x1;:::;xp)2Fpq:P ix2i= 1g. a) Montrer queqp qp12 [p]. b) En considerant une action de groupe, montrer quejSj 1 +pq [p]. c) Montrer qu'il existe une base deFpqdans laquelle la forme quadratiqueP iX2iadmet pour matrice diag0 1 1 0 ;:::;0 1 1 0 ;(1)p12 d) En deduire quejSj=qp12 (qp12 + (1)p12 q12 e) Conclure quepq qp = (1)p12 q12 (c'est la loi de reciprocite quadratique).

Solution de l'exercice7.

a) Soita2Fp. S'il existeb2Fptel quea=b2, alorsap12 =bp1= 1. Donc lesp12 carres non nuls dansFpsont racines du polyn^omeXp12

12Fp[X]. Or ce polyn^ome admet au plusp12

racines, donc ses racines sont exactement les carres non nuls. Or pout touta2Fp, ap12

2= 1, donc

a p12 =1. Cela assure que pour touta2Znon divisible parp,ap ap12 [p] (le symboleap est deni de facon evidente). D'ou le resultat. b) Le groupeG=Z=pZagit surSpar permutation circulaire. L'equation aux classes assure que jSGj jSj[p]. OrSG=fx2Fq: (x;:::;x)2Sg=fx2Fq:px2= 1g. DoncSG=;sipn'est pas un carre moduloq, etjSGj= 2 sipest u carre moduloq. D'ou le resultat. c) Les deux formes quadratiques mentionnees sont de rangpet de discriminant 1, donc elles sont equivalentes surFq(voir le theoreme de classication des formes quadratiques sur un corps ni). D'ou le resultat. d) La question c) assure que jSj=jf(x1;:::;xp)2Fpq:x1x2++xp2xp1+ (1)p12 x2p= 1gj: x2p= 1g,T0:=f(x1;:::;xp)2

T:x1==xp2= 0getT1:=TnT0. Il est clair quejT0j=

1 + (1)p12 q q p12

1 + (1)p12

q12 qp12 . Ensuite, pour tout (x1;:::;xp2)2Fp12 qn f0g, et toutxp2Fq, l'equation x

1x2++xp2xp1+ (1)p12

x2p= 1 denit un hyperplan ane deFp12 q, donc l'ensemble des solutions de cette equation est de cardinalqp32 . Cela assure quejT1j= qp12 1 qqp32 qp12 1 qp12 . Donc nalement jSj=jTj=jT0j+jT1j=qp12 qp12 + (1)p12 q12 4 e) Les questions a), b) et d) assurent que 1 + pq qp12 qp12 + (1)p12 q12 [p]; donc en utilisant la question a), pq (1)p12 q12 qp [p]:

Puisque ces nombres valent1, on en deduit que

pq = (1)p12 q12 qp

Exercice 8 :? ? ?

Soienta;b;c2Zsans facteurs carres. On considere la forme quadratiquef(x;y;z) :=ax2+by2+cz2 surQ3. a) A quelle condition sura;b;cla formefest-elle isotrope surR? b) On supposea;b >0 etc=1 et on notedle pgcd deaetb. Montrer que la forme quadratique fest isotrope surQsi et seulement si les trois conditions suivantes sont satisfaites i)aest un carre modulob. ii)best un carre moduloa. iii)abd

2est un carre modulod.

c) On suppose desormaisa;b;cdeux-a-deux premiers entre eux. Montrer quefest isotrope surQ si et seulement sifest isotrope surRet les trois conditions suivantes sont satisfaites i)abest un carre moduloc. ii)acest un carre modulob. iii)bcest un carre moduloa. d) Sous les hypotheses de la question c), montrer quefest isotrope surQsi et seulement sifest isotrope surRet pour tout nombre premierp, pour tout entierm1, il existe (x;y;z)2Z3 non tous divisibles parptels quef(x;y;z)0 [pm]. e) Verier que dans l'equivalence precedente, il sut de prendrepjabcetm= 2. f) Soitqune forme quadratique non degeneree surQ3. Donner un algorithme permettant dequotesdbs_dbs15.pdfusesText_21