[PDF] PRODUIT SCALAIRE DANS LESPACE



Previous PDF Next PDF







Chapitre 7 : Produit scalaire de deux vecteurs du plan

I) Produit scalaire de deux vecteurs a) Définition u et v sont deux vecteurs du plan, on appelle produit scalaire de u par v , le nombre réel noté u v égal à : • 0 si l’un des vecteurs est nul • II u II ××××II v II ××× COS ( u, v ) si u ≠ 0 et v ≠ 0 Remarques : • Si les deux vecteurs u et v sont orthogonaux, alors cos



Opérations sur les vecteurs

Le produit scalaire de deux vecteurs correspond à la somme des produits de leurs composantes Si =(a, b) et = (c, d), Alors • = ac + bd Il est important de mentionner que le produit scalaire n’est pas un vecteur mais un scalaire qui permettra de vérifier certaines propriétés aux deux vecteurs Souvent, le produit scalaire est



Produit scalaire en dimension 3 Norme dun vecteur en dim 2

Produit scalaire de deux vecteurs en dim 3 Par rapport à une base orthonormée, considérons les vecteurs u= u1 u2 u3,v= v1 v2 v3 Ces deux vecteurs de l'espace sont nécessairement dans un même plan On peut donc leur appliquer le théorème du cosinus : þu fi þþv fi þcos HjL= 1 2 Jþu fi þ2+þv fi þ2-þu fi-v fi þ2N = 1 2 Iu1 2



Produit vectoriel et déterminant dans l’espace

Propriétés du produit vectoriel de deux vecteurs de l’espace Bien prendre garde, que contrairement au produit scalaire, qui d’ailleurs est un nomre et pas un ve teur, le produit vetoriel n’est pas ommutatif En effet, hanger l’ordre des veteurs, hange le signe du produit : - Bilinéarité



PRODUIT SCALAIRE - AlloSchool

Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I) Le produit scalaire de deux vecteurs 1° Définitions Définition1 : Soit u et v deux vecteurs du plan Et soient A; B et C trois points du plan tel que : u AB et v AC On appelle produit scalaire de par , noté uv , le nombre réel définit par : Si u 0 ou v 0 alors



Le produit scalaire et ses applications

Définition 2 : Dans un repère orthonormal (O,~ı,~â), le produit scalaire de deux vecteurs ~u et~v de coordonnées respectives (x;y) et (x0;y0) est égal à : ~u ~v = xx0+yy0 On peut aussi utiliser la notation matricielle : x y x0 y0 = xx0+yy0 PAUL MILAN 17 mai 2011 PREMIÈRE S



PRODUIT SCALAIRE DANS LESPACE

PRODUIT SCALAIRE DANS L'ESPACE I Produit scalaire de deux vecteurs 1) Définition Soit et deux vecteurs de l'espace A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C Définition : On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P On a ainsi :



Chapitre I - ENSA de Marrakech: Ecole dingénieurs

La somme de deux vecteurs : Le vecteur est représenté géométriquement par : (voir figure Somme) La multiplication par un scalaire : I 3 2 Produit scalaire Le produit scalaire de deux vecteurs non nuls représentés par les bipoints OA et OB est le nombre réel OA OB cos(θ) si l'angle θ désigne celui de AOB



Exercices corrigés - AlloSchool

Exercice 3 : produit scalaire en fonction des normes de vecteurs Exercices 4 et 5 : orthogonalité de deux vecteurs et produit scalaire nul Exercice 6 : formule de la médiane Exercice 7 : produit scalaire de vecteurs colinéaires Exercices 8 et 9 : produit scalaire de vecteurs quelconques à l’aide d’une projection orthogonale

[PDF] produit vectoriel exercice

[PDF] projection d'un vecteur sur un autre

[PDF] forme trigonométrique d'un nombre complexe applications capes

[PDF] l'influence sociale en psychologie

[PDF] non conformité définition iso 9001

[PDF] qu'est ce que la psychologie sociale

[PDF] psychologie sociale cours licence 1

[PDF] cours d introduction psychologie sociale

[PDF] psychologie sociale cours et exercices pdf

[PDF] normes apa exemple

[PDF] norme apa automatique

[PDF] normes apa statistiques

[PDF] apa 6ème édition

[PDF] normes apa psychologie 2016

[PDF] comment trouver l abscisse a l origine

1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My zquotesdbs_dbs6.pdfusesText_12