[PDF] Premi`ere S Produit scalaire - MATHS-LFBFR



Previous PDF Next PDF







SERIE 35 – Les droites Equation d’une droite, droites

Exercices de math ECG J P – 1ère A SERIE 35 – Les droites Equation d’une droite, droites parallèles, perpendiculaires Exercice 1 : A l’aide d’une représentation graphique, déterminer l’équation de chacune des droites ci-dessous sachant que : a) d1 passe par les points A1 =< >4;6 et B1 =8; 3 ;



Les équations de droites - Meabilis

Deux droites sont perpendiculaires : Ce théorème n'est appliquable que dans un repère orthonormé Si le produit des coefficient directeurs des deux droites est égal à -1 alors ces deux droites sont perpendiculaires (la réciproque est vraie) Problème : Ce problème permet de comprendre comment: - calculer une équation d'une droite



Premi`ere S Produit scalaire - MATHS-LFBFR

1 D´eterminer si deux droites sont perpendiculaires 1 1 Rappel du chapitre 5 Rappels : Toute droite du plan admet une ´equation cart´esienne de la forme ax+by +c = 0 (a, b et c r´eels avec (a;b) 6= (0;0) ) et le vecteur →u(−b;a) est un vecteur directeur de cette droite 1 2 D´eterminer si deux droites sont perpendiculaires M´ethode :



GEOMETRIE ANALYTIQUE – EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE – EQUATIONS DE DROITES Géométrie analytique C’est Descartes (1596-1650) qui a développé l’idée de représenter les figures géométriques dans un repère, les points du plan étant définis par leurs coordonnées (x,y), l’abscisse et l’ordonnée



Chapitre 12 : Produit scalaire et équations de droites

Soient deux droites pdq et pd1q dans le plan, de vecteurs directeur directeurs respectivement Ñu et Ñ u1 et de vecteurs normales respectivement Ñv et Ñ v1 • Alors pdq et pd1q sont perpendiculaires si l’une des propriétés équivalentes ci-dessous est vérifiée : ˝ Ñu et Ñ u1 sont orthogonaux ˝ Ñv et Ñ v1 sont orthogonaux



Chapitre 14 : Equations paramétriques et cartésiennes

Définition : Droites orthogonales Deux droites de l’espace sont orthogonales si et seulement s’il existe deux droites coplanaires qui leur sont parallèles et qui sont perpendiculaires entre elles Remarque : On réserve le terme « perpendiculaire » à des droites qui sont orthogonales et sécantes



Chapitre 13 — Équations de droites et de cercleduplan

Chapitre 13 — Équations de droites et de cercleduplan Danstoutceparagraphe,leplanestmunid’unrepèreorthonormé O;~i,~j I — Rappels 1) Vecteursdirecteurs SiDestunedroiteduplanet~v unvecteurnonnul,onditque~v estunvecteurdirecteurde Ds’ilexistedeuxpointsA etB appartenantàDtelsque~v = −−→ AB



Équations de droites 1 A d y x d y x A - Le prof de math

1 Donner l’équation réduite de la droite (BC) 2 I est le milieu de [AB], calculer les coordon-nées de I Donner l’équation réduite de la droite d, pas-sant par I et parallèle à (BC) 3 J est le milieu de [AC] Calculer les coordonnées de J et vérifier par le calcul que J appartient à la droite d



COURS À IMPRIMER, PUIS À COLLER DANS LE CAHIER DE COURS

1) Dans un repère, deux droites non verticales sont parallèles si et seulement si elles ont le même coefficient directeur 2) Dans un repère orthonormé, deux droites non verticales sont perpendiculaires si et seulement si le produit de leur coefficient directeur vaut 1 3) Dans le cas de deux droites perpendiculaires, m0= 1 m

[PDF] équation symétrique

[PDF] pente de deux droites perpendiculaires

[PDF] coordonnées ? l origine

[PDF] equation d une droite

[PDF] normes apa uqam

[PDF] tableau apa

[PDF] forme factorisée a canonique

[PDF] parabole forme canonique

[PDF] format mémoire universitaire

[PDF] eric emmanuel schmitt pdf

[PDF] normes présentation ulaval

[PDF] guide de présentation des travaux ulaval fsa

[PDF] guide de rédaction ulaval fsa

[PDF] page titre ulaval

[PDF] présentation thèse ppt

Premi`ere S-m´ethode Chapitre :Produit scalairevecteur normal `a une droite-droites perpendiculaires

Table des mati`eres1 D´eterminer si deux droites sont perpendiculaires 1

1.1 Rappel du chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 D´eterminer si deux droites sont perpendiculaires . . . . . . . . . . . . . . . . . . . . .1

2 Rappels de cours 2

3 D´eterminer les coordonn´ees d"un vecteur normal `a une droite 3

4 D´eterminer une ´equation cart´esienne d"une perpendiculaire 3

4.1 M´ethode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

4.2 Exemple : perpendiculaire `a une droite d´efinie par une ´equation . . . . . . . . . . . .4

4.3 Exemple : perpendiculaire `a une droite d´efinie par deux points . . . . . . . . . . . . .6

Le plan est muni d"un rep`ereorthonorm´e(O;-→i;-→j).

1D´eterminer si deux droites sont perpendiculaires

1.1 Rappel du chapitre 5

Rappels :

Toute droite du plan admet une ´equation cart´esienne de la formeax+by+c= 0 (a,betcr´eels avec (a;b)?= (0;0) ) et le vecteur -→u(-b;a) est un vecteur directeur de cette droite.

1.2 D´eterminer si deux droites sont perpendiculairesM´ethode :

On donne les droites (d) et (d?) d"´equations respectivesax+by+c= 0 eta?x+b?y+c?= 0•D´eterminer un vecteur directeur de chacune des droites, par exemple

-→u(-b;a) est un vecteur directeur de (d) et-→v(-b?;a?) est un vecteur directeur de (d?)•V´erifier que -→u .-→v= 0•Conclusion : Les vecteurs

-→uet-→vsont orthogonaux donc (d)?(d?)?Exemple 1 : perpendicularit´e de deux droites d´efinies par leurs ´equations cart´esiennesDans un rep`ere orthonorm´e, on donne (d) d"´equation 2x-3y+1 = 0, (d1) d"´equation 6x+4y-3 =

0 et (d2) d"´equation 4x+ 3y-6 = 0.

Les droites (d) et (d1) sont-elles perpendiculaires?

Les droites (d) et (d2) sont-elles perpendiculaires?Chapitre :Produit scalaire Page 1/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaire?Solution: (d) a pour ´equation 2x-3y+ 1 = 0 donc-→u(3;2) est un vecteur directeur de (d) (d1) a pour ´equation 6x+ 4y-3 = 0 donc-→v(-4;6) est un vecteur directeur de (d1) (d2) a pour ´equation 4x+ 5y-6 = 0 donc-→w(-3;4) est un vecteur directeur de (d2) u .-→v=x-→ux-→v+y-→uy-→v= 3×(-4) + 2×6 = 0 donc -→uet-→vsont orthogonauxdonc (d)?(d1)-→ u .-→w=x-→ux-→w+y-→uy-→w= 3×(-3) + 2×4 =-1 donc

-→uet-→wne sont pas orthogonauxdonc (d) et (d2) ne sont pas perpendiculaires2Rappels de cours

Si-→

u(x;y)(non nul) alors-→ v(-y;x)est orthogonal au vecteur -→u Si (d) a pour ´equationax+by+c= 0, le vecteur-→ n(a;b)est un vecteur normal `a la droite (d) Si -→uest un vecteur directeur de (d) alorsM(x;y) appartient `a la droite perpendiculaire `a (d) passant parAsi est seulement si--→ AM.-→u= 0Chapitre :Produit scalaire Page 2/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaire3D´eterminer les coordonn´ees d"un vecteur normal `a une droite

Si (d) a pour ´equationax+by+c= 0, le vecteur-→ n(a;b)est un vecteur normal `a la droite (d)

Remarque :Tout vecteur-→vcolin´eaire `a-→nest aussi un vecteur normal `a la droite(d)?Exemple 2 : vecteur normalD´eterminer un vecteur directeur puis un vecteur normal `a la droite (d) d"´equation cart´esienne

2x-5y+ 2 = 0?Solution:

On a icia= 2 etb=-5 donc le vecteur-→u(5;2) est un vecteur directeur de (d). (vecteur de coordonn´ees (-b;a)) et le vecteur -→n(2;-5) est un vecteur normal `a la droite (d)Remarque

Le vecteur

-→v=-2-→nest aussi un vecteur normal `a (d) et on a alors-→v(-4;10).4D´eterminer une ´equation cart´esienne d"une perpendiculaire

4.1 M´ethode

On veut d´eterminer une ´equation de la droite (d?) perpendiculaire `a (d) et passant parA(xA;yA).M´ethode 1 : en utilisant un vecteur normal

•D´eterminer les coordonn´ees d"un vecteur normal -→n(x-→n;y-→n) `a la droite (d)•-→ nest un vecteur directeur de la droite (d?)

Deux possibilit´es pour utiliser le vecteur

-→n: Une ´equation de (d?) est de la formea?x+b?y+c?= 0 avecb?=-x-→neta?=y-→npuis on d´eterminec?en utilisant les coordonn´eesxAetyAdu pointA.

Soit on utilise le pointM(x;y)?(d?) avec les vecteurs--→AMet-→ncolin´eairesChapitre :Produit scalaire Page 3/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaireRappel :

-→u(x;y) et-→v(x?;y?) (non nuls) colin´eaires si et seulement six?y-yx?= 0M´ethode 2 : en utilisant le produit scalaire

•D´eterminer les coordonn´ees d"un vecteur -→udirecteur de la droite (d)•SoitM(x;y) un point de (d?). --→AM(x-xA;y-yA) et--→AMet-→usont orthogonaux. --→AM.-→u= 0 (x-xA)x-→u+ (y-yA)y-→u= 0 D´evelopper et r´eduire pour obtenir une ´equation de (d?)

4.2 Exemple : perpendiculaire `a une droite d´efinie par une ´equation?Exemple 3 : Droite d´efinie par une ´equationD´eterminer une ´equation cart´esienne de la droite (d?) passant parA(2;-3) et perpendiculaire

`a (d) d"´equation 2x-5y+ 2 = 0Avec la m´ethode 1 : ?Solution: (d) a pour ´equation 2x-5y+ 2 = 0 donc-→n(2;-5) est vecteur normal `a la droite (d).(vecteur de coordonn´ees(a;b)aveca= 2etb=-5) et est un vecteur directeur de (d?) donc (d?) a une ´equation de la forme-5x-2y+c?= 0

A(2;-3)?(d?)?? -5xA-2yA+c?= 0

?? -5×2-2×(-3) +c?= 0 ?? -4 +c?= 0 ??c?= 4-5x-2y+ 4 = 0 est une ´equation de (d?)Remarque On peut aussi ´ecrire que siM(x;y) appartient `a (d?),--→AMet-→nsont colin´eaires.? x --→AM=xM-xA=x-2 y --→AM=yM-yA=y-(-3) =y+ 3 donc--→AM(x-2;y+ 3) --→AMet-→ncolin´eaires ??x--→AMy-→n-y--→AMx-→n= 0 ??(x-2)×(-5)-(y+ 3)×2 = 0 ?? -5x+ 10-2y-6 = 0 ?? -5x-2y+ 4 = 0Chapitre :Produit scalaire Page 4/8Maths premi`ere S Premi`ere S-m´ethode Chapitre :Produit scalaireM´ethode 2 : Utiliser le produit scalaire ?Solution: (d) a pour ´equation 2x-5y+ 2 = 0 donc-→u(5;2) est un vecteur directeur de (d) M(x;y) appartient `a (d)??--→AMet-→usont orthogonaux.? x --→AM=xM-xA=x-2 y --→AM=yM-yA=y-(-3) =y+ 3 donc--→AM(x-2;y+ 3) --→AMet-→uorthogonaux ??x--→AMx-→u+y--→AMy-→u= 0 ??(x-2)×5 + (y+ 3)×2 = 0 ??5x-10 + 2y+ 6 = 0 ??5x+ 2y-4 = 05x+ 2y-4 = 0 est une ´equation de (d?)Remarque Les deux ´equations obtenues avec les m´ethodes 1 et 2 sont ´equivalentes. Il suffit de multiplier les deux membres de la premi`ere par-1 pour obtenir la seconde

5x+ 2y-4 = 0?? -5x-2y+ 4 = 0Contrˆole du r´esultat avec GEOGEBRA :

•Tracer (d) en saisissant son ´equation dans la barre de saisie (en bas de la fenˆetre)•Placer le point A

•En utilisant la commande "tracer une perpendiculaire", pointer sur A puis sur (d) et la

perpendiculaire `a (d) passant parAs"affiche avec une ´equation dans la fenˆetre alg`ebreChapitre :Produit scalaire Page 5/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaire4.3 Exemple : perpendiculaire `a une droite d´efinie par deux points

?Exemple 4 : Droite d´efinie par deux pointsOn donneA(2 : 3) etB(-3;1).

D´eterminer une ´equation cart´esienne de la droite (d?) passant parC(1;4) et perpendiculaire `a

(AB) .Cet exemple est identique au pr´ec´edent, le rˆole du vecteur -→u´etant jou´e ici par le vecteur-→ABqui est un vecteur directeur de la droite (AB).Avec la m´ethode 1 : ?Solution:? x -→AB=xB-xA=-3-2 =-5 y -→AB=yB-yA= 1-3 =-2 donc-→AB(-5;-2) donc -→n(2;-5) est vecteur normal `a la droite (d). donc (d?) a une ´equation de la forme-5x-2y+c?= 0

C(1;4)?(d?)?? -5xA-2yA+c?= 0

?? -5×1-2×4 +c?= 0 ?? -13 +c?= 0 ??c?= 13-5x-2y+ 13 = 0 est une ´equation de (d?)Remarque Chapitre :Produit scalaire Page 6/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaireOn peut aussi ´ecrire que siM(x;y) appartient `a (d?),--→AMet-→nsont colin´eaires.

(voir remarque de l"exemple pr´ec´edent (m´ethode 1)Avec la m´ethode 2 : utilisation du produit scalaire

?Solution:? x -→AB=xB-xA=-3-2 =-5 y -→AB=yB-yA= 1-3 =-2 donc-→AB(-5;-2) est un vecteur directeur de (d) SiM(x;y) appartient `a (d?),--→CMet-→ABsont orthogonaux.? x --→CM=xM-xC=x-1 y --→CM=yM-yC=y-4 donc--→CM(x-1;y-4) --→CMet-→ABsont orthogonaux ??x--→CMx-→AB+y--→CMy-→AB= 0 ??(x-1)×(-5) + (y-4)×(-2) = 0 ?? -5x+ 5-2y+ 8 = 0

?? -5x-2y+ 13 = 0-5x-2y+ 13 = 0 est une ´equation de (d?)Contrˆole du r´esultat avec GEOGEBRA :

•Placer les pointsAetBpuis tracer la droite passant par A et B (commande "droite passant

par deux points")•Placer le pointC•En utilisant la commande "tracer une perpendiculaire", pointer surCpuis sur (AB) et la

perpendiculaire `a (AB) passant parCs"affiche avec une ´equation dans la fenˆetre alg`ebreChapitre :Produit scalaire Page 7/8Maths premi`ere S

Premi`ere S-m´ethode Chapitre :Produit scalaireChapitre :Produit scalaire Page 8/8Maths premi`ere S

quotesdbs_dbs41.pdfusesText_41