[PDF] Corrigé du TD no 7



Previous PDF Next PDF







Daniel ALIBERT Relations dordre Entiers Anneaux et corps

Daniel ALIBERT cours et exercices corrigés volume 2 3 Organisation, mode d'emploi Cet ouvrage, comme tous ceux de la série, a été conçu, dans son format comme dans son contenu, en vue d'un usage pratique simple Il s'agit d'un livre d'exercices corrigés, avec rappels de cours



Correction TP 6 : Relation d’ordre

Exercice 3 : Relation d’ordre partielle Une relation d’ordre est une relation binaire r´eflexive, antisym´etrique et tran-sitive De plus, elle est partielle si au moins un couple d’´el´ements ne peut pas ˆetre compar´e La relation de divisibilit´e sur l’ensemble des entiers est bien une relation d’ordre :



TD2 : Relations d’ordre et d’équivalence (avec corrigé)

TD2 : Relations d’ordre et d’équivalence (avec corrigé) Exercice 1: (a) Prouvez que la relation sur Z aRb ⇔ a −b est un multiple de 5 est une relation d’équivalence Solution: On vérifie les 3 conditions : — Réflexivité : Soit x ∈ Z On veut prouver xRx, c’est à dire x− est un multiple de 5 On a x − x = 0 = 5 ×0



RELATION BINAIRE - Claude Bernard University Lyon 1

1 Montrer que est une relation d’ordre 2 On admettra qu’il s’agit d’une relation d’ordre totale Classer par ordre croissant les dix premiers couples de muni de la relation d’ordre Allez à : Correction exercice 18 : Exercice 19 : Soient une relation définie sur par : ( ) ( ) 1 Montrer que est une relation d’équivalence 2



Relation d’équivalence, relation d’ordre 1 Relation d’équivalence

est une relation d’équivalence Préciser, pour x fixé dans R, le nombre d’éléments de la classe de x modulo R Indication H Correction H Vidéo [000212] 2 Relation d’ordre Exercice 3 Soit (E;6) un ensemble ordonné On définit sur P(E)nf0/gla relation ˚par X ˚Y ssi (X =Y ou 8x 2X 8y2Y x 6y): Vérifier que c’est une relation d



Corrigé du TD no 7

0:eneffet,d’aprèslepostulatd’Euclide,sil’onsedonne unedroiteD duplan,alorsilpasseparunpointdonné(icienl’occurence,l’origineduplan)une uniquedroiteparallèleàD End’autrestermes,l’application E 0 −→E/ k D 0 7−→Cl(D 0) estbijective,cequ’onvoulait 3



Module B03 Feuille d’exercices N 5 - univ-rennes1fr

On d´efinit la relation : x ∼ y ⇔ xRy et yRx 1) Montrer que ∼ est une relation d’´equivalence sur E Sur E/ ∼ on pose : ˙x ≤ y˙ ⇐⇒ xRy 2) Montrer que cette d´efinition est ind´ependante des repr´esentants x et y choisis 3) Montrer que ≤ est une relation d’ordre sur E/ ∼ Exercice n 25



Mathématiques discrètes, 1ère année

Par exemple la relation d'ordre entre les nombres est binaire puisqu'elle permet de comparer deux nombres outefoisT il existe aussi des relations ternaires ou plus Par exemple l'équation x 2+y +z2 = 1 qui dé nit la sphère unité dans R3, est une relation ternaire entre les 3 coordonnées x, yet zdes points de R3

[PDF] relation d'ordre pdf

[PDF] relation d'ordre total et partiel exercice corrigé

[PDF] relation dali picasso

[PDF] Relation de Chales

[PDF] relation de chargaff

[PDF] Relation de Chasles

[PDF] Relation de Chasles

[PDF] Relation de Chasles - 1ère S

[PDF] relation de chasles 1ere s cours

[PDF] relation de chasles 1ere s exercices

[PDF] relation de chasles angles orientés

[PDF] relation de chasles cours 1ère s

[PDF] relation de chasles exercices corrigés

[PDF] relation de chasles exercices corrigés 1ere s

[PDF] relation de chasles exercices corrigés seconde

CPP - 2013/2014 Algèbre générale I

J. Gillibert

Corrigé du TD n

o7Exercice 1 Dire si chacune des relations ci-dessous est réflexive, symétrique, ou transitive.

1. La relationRsurQdéfinie par :

xRy?xy?= 0 (a) La relationRest-elle réflexive? C"est-à-dire, est-il vrai quexRxpour toutx?Q? IcixRx signifiex2?= 0, ce qui est faux pourx= 0. DoncRn"est pas réflexive. (b) La relationRest-elle symétrique? C"est-à-dire, est-il vrai quexRy?yRxpour tout couple (x,y)?Q2? La réponse est oui, carxy?= 0?yx?= 0.

(c) La relationRest-elle transitive? C"est-à-dire, étant donné trois nombresx,yetztels quexRy

etyRz, est-il vrai quexRz? La réponse est oui. En effet, sixy?= 0alorsx?= 0ety?= 0. De même, siyz?= 0, alorsy?= 0etz?= 0. Il en résulte quexz?= 0puisquexetzsont non nuls.

2. La relationTsurZdéfinie par :

aTb?a-best divisible par2ou par3 (a) La relationTest réflexive. En effet, pour touta?Z,a-a= 0est divisible par2(et par3!). (b) La relationTest symétrique. En effet, siaTbest vrai, alorsa-best divisible par2ou par3, donc son opposéb-aest lui aussi divisible par2ou par3, c"est-à-dire quebTaest vrai. (c) La relationTn"est pas transitive. On peut donner le contre-exemple suivant :6T3et3T1sont vrais, mais6T1est faux.

Exercice 2

On considère la relationRsurRdéfinie par :

xRy?x2-y2=x-y

1. On remarque que :

xRy?x2-x=y2-y

Grâce à cette nouvelle formulation, il est facile de vérifier queRest une relation d"équivalence (ce

que nous ne faisons pas ici).

2. Soitx?R. Par définition, la classe d"équivalence dex, notéeCl(x), est l"ensemble

Cl(x) ={y?R|xRy}

On cherche donc l"ensemble desysatisfaisantx2-y2=x-y. Bien sûr,y=xest solution, puisqueRest réflexive. Pour trouver les autres solutions, on peut supposer quey?=x. Sachant que x

2-y2= (x-y)(x+y), l"équation devient(x-y)(x+y) =x-y, d"oùx+y= 1en divisant les

deux côtés parx-y. Autrement dit,y= 1-x. Au final, nous avons montré que :

Cl(x) ={x,1-x}.

Exercice 3

On définit une relation≂surP(R)(l"ensemble des parties deR) en posant :

X≂Y?X?[0,1] =Y?[0,1]

1

1. Vérifions que≂est bien une relation d"équivalence :

(a) Réflexivité : pour toute partieXdeR, il est vrai queX?[0,1] =X?[0,1], doncX≂X. (b) Symétrie : siXetYsont deux parties deR, alors :

X?[0,1] =Y?[0,1]?Y?[0,1] =X?[0,1]

c"est-à-dire queX≂Y?Y≂X. (c) Transitivité : siX,YetZsont trois parties deRtelles queX≂YetY≂Z, alors nous avons

X?[0,1] =Y?[0,1]etY?[0,1] =Z?[0,1]

il en résulte que

X?[0,1] =Z?[0,1]

c"est-à-dire queX≂Z.

2. La classe d"équivalence deXpour la relation≂est

Cl(X) ={Y?P(R)|X?[0,1] =Y?[0,1]}

Afin de décrire plus explicitementCl(X), on fait la remarque suivante :X?[0,1] =Y?[0,1]si et seulement siX\[0,1] =Y\[0,1]. À partir de là, on voit que :

Cl(X) ={(X\[0,1])?A|A?[0,1]}

3. Par définition, l"ensemble quotientP(R)/≂est l"ensemble des classes d"équivalence pour la relation

≂. Pour identifier cet ensemble, on peut choisir un représentant, le plus naturel possible, dans chaque

classe. Or, d"après la question précédente, la classe deXest caractérisée parX\[0,1], que l"on

peut prendre comme représentant. Vu sous cet angle, l"ensemble quotient s"identifie à l"ensemble

des parties de la formeX\[0,1], c"est-à-dire à l"ensemble des parties deR\[0,1].

Exercice 4

SoitEl"ensemble des droites du plan euclidienR2. On considère la relation?surEdéfinie par :

D?D??Dest parallèle àD?

1. Vérifions que?est une relation d"équivalence :

(a) Réflexivité : une droiteDest bien parallèle à elle-même. (b) Symétrie : siDest parallèle àD?, alorsD?est parallèle àD.

(c) Transitivité : siDest parallèle àD?, et siD?est parallèle àD??, alorsDest parallèle àD??.

2. SoitE0l"ensemble des droites passant par l"origine. Alors chaque classe d"équivalence pour la

relation?contient un unique élément deE0: en effet, d"après le postulat d"Euclide, si l"on se donne

une droiteDdu plan, alors il passe par un point donné (ici en l"occurence, l"origine du plan) une unique droite parallèle àD. En d"autres termes, l"application E

0-→E/?

D

0?-→Cl(D0)

est bijective, ce qu"on voulait.

3. D"après la question précédente, pour montrer que l"ensemble quotientE/?est en bijection avec

R? {∞}, il suffit de montrer queE0est en bijection avecR? {∞}. Pour cela, on considère l"application E

0-→R? {∞}

D

0?-→le coefficient directeur deD0

avec la convention suivante : la droite verticale a pour coefficient directeur∞. Il est facile de vérifier

que cette application est bijective, d"où le résultat. 2

Exercice 5

On considère la relationRsurZ×Z?définie par : (a,b)R(c,d)?ad=bc

1. Montrons queRest une relation d"équivalence

(a) Réflexivité : soit(a,b)?Z×Z?. Alorsab=badonc(a,b)R(a,b). (b) Symétrie : nous avons (a,b)R(c,d)?ad=bc?cb=da?(c,d)R(a,b) (c) Transitivité : soient trois couples(a,b),(c,d)et(e,f)tels que(a,b)R(c,d)et(c,d)R(e,f), c"est-à-diread=bcetcf=de. Alors il vient adf=bcfetbcf=bde d"où adf=bde. Commedn"est pas nul, on en déduit queaf=be, c"est-à-dire que(a,b)R(e,f).

2. On considère l"application

q: (Z×Z?)/R -→Q

Cl((a,b))?-→ab

Il faut d"abord vérifier que cette applicationqest bien définie, autrement dit que si(a,b)et(c,d)

sont deux représentants de la même classe, alors ab =cd . Or cette dernière condition se traduit par ad=bc, qui est la définition même de(a,b)R(c,d). Autrement dit : ab =cd ?(a,b)R(c,d)

Ceci montre à la fois queqest bien définie, et qu"elle est injective. La surjectivité est évidente.

Exercice 6

Soitn >0un entier fixé. Siaest un entier relatif, on noteala classe deamodulon.

1. Montrer que :a={a+nk|k?Z}=a+nZ

2. Montrer que :

Z/nZ={0,1,...,n-1}

oùZ/nZdésigne l"ensemble quotient deZpar la relation de congruence modulon.

Exercice 7

Soitω >0un réel fixé. Siaest un réel, on noteala classe deamoduloω.

1. Montrer que :a={a+ωk|k?Z}=a+ωZ

2. Montrer que l"ensemble quotientR/ωZest en bijection avec l"intervalle[0,ω[.

3quotesdbs_dbs49.pdfusesText_49