[PDF] NOMBRES COMPLEXES - Free



Previous PDF Next PDF









Chapitre 3 : Fonctions de références

Remarque: Dans un repère orthonormé, les courbes représentant les fonctions carré et racine carrée sur [ r;+∞[ sont symétriques l’une de l’autre par rapport à la droite d’équation = Démonstration: Pour > r, 2− est un trinôme de degré t dont les racines sont r et s



Distance de deux points dans un rep re orthonormal

Dans tout ce chapitre, nous travaillerons dans un repère orthonormal ( O , I , J ) Un repère ( O , I , J ) est dit orthonormal ( ou orthonormé ) lorsque les axes sont perpendiculaires et lorsque OI = OJ ( = 1 ) Recherche : Considérons deux points A et B de coordonnées respectives (x A; y A) et (x B; y B) Nous supposerons de



I Fonction valeur absolue Abs x - Free

Dans un repère orthonormé , les courbes représentatives de la fonction racine carrée et de la fonction carré ( sur ) sont symétriques par rapport à la première bissectrice du repère ( droite d’équation y = x ) (La démonstration sera faite dès que la condition d’orthogonalité de 2 vecteurs aura été traitée) h



ˇ ˆ ˘1 ˝ ˇ - mathsbdpfr

2) Dans un repère orthonormé, on donne (−2 ;1 ), ( 2 ; −1) et ’ ( 1 ; −3) Démontrer que le triangle ABC est rectangle Méthode pour montrer qu'un triangle est rectangle avec les longueurs On calcule le carré des longueurs des 3 côtés ; On compare le plus grand carré à la somme des carrés des longueurs des deux autres



Corrigé du bac c 2016 Session normale Exercice 1

Le plan complexe P est muni d’un repère orthonormé 1 a) Calcul de etfactorisation de : Ceci montre que est une racine de , et par suite est factorisable par Utilisons le tableau de Horner pour factoriser : Ainsi : b) Résolution de l’équation : Comme : , alors : L’équation



NOMBRES COMPLEXES - Free

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et –3 et 2 a pour raci ne 2 et - 2 Par contre, aucun réel négatif n'a de racine (réelle) C'est pour pallier à cette discrimination que furent créer les nombres complexes Le nombre i : On appelle i un nombre dont le carré est –1



Repérage sur la droite, dans le plan et dans l’espace

— Quand le triangle OIJ est choisi isocèle rectangle en O, on parle de repère orthonormé Dans ce cas, le parallélogramme OISJ est un carré Le milieu d’un segment a pour coordonnées la moyenne des coordonnées des extrémités de ce segment Dans le cas du repère orthonormé, la longueur d’un segment est la racine carrée de la



Les propriétés de l’hyperbole

Soit une hyperbole d’équation en repère orthonormé : Considérons une droite parallèle à l’axe des ordonnées du repère et d’équation Considérons alors pour un point hyperbolede l’ , le carré du quotient de la distance à la distance de à la droite



Fonctions carrée et inverse Autres fonctions élémentaires

obtenue avec un plan parallèle à un génératrice du cone 1 4 Fonctions se ramenant à la fonction carrée Définition 4 On définit une fonction f sur R par : f(x) = ax2 La représentation de ces fonctions sont des paraboles Les variations de f sont identiques à la fonction carrée lorsque a >0 La parabole est tournée vers le haut

[PDF] repere orthonormé calculer coordonnées d'un point

[PDF] repéré orthonormé cercle circonscrit

[PDF] repère orthonormé controle

[PDF] Repère orthonormé d'origine O

[PDF] repère orthonormé dans l'espace

[PDF] Repère orthonormé dans un triangle

[PDF] repère orthonormé définition

[PDF] repère orthonormé distance entre 2 points

[PDF] repère orthonorme dm

[PDF] repere orthonormé droites equations

[PDF] Repere orthonormé du plan

[PDF] Repère orthonormé du plan

[PDF] repère orthonormé en ligne

[PDF] repère orthonormé et conjecturer

[PDF] repere orthonormé et figure

Ch4 : Nombres complexes (TS)

- 1/18 -

NOMBRES COMPLEXES

I. INTRODUCTION ET DEFINITION

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et -3 et 2 a pour racine2 et -2.

Par contre, aucun réel négatif n"a de racine (réelle). C"est pour pallier à cette discrimination que furent créer les nombres complexes.

Le nombre i :

On appelle

i un nombre dont le carré est -1. On décrète que i est la racine de -1. Ainsi : i2 = -1

De plus, son opposé -

i a aussi pour carré -1. En effet : (-i)2 = [(-1) × i]2 = (-1)2 × i2 = -1 Conclusion : Les deux racines de -1 sont deux nombres irréels i et -i.

Le nombre

i est appelé nombre imaginaire. L forme factorisée de x2 + 1 est (x + i) . (x - i)

Un peu d"histoire : le nombre i a longtemps été noté -1 pour la raison évidente que i a pour carré -1.

La notation i fut introduite par Euler en 1777, puis reprise par Gauss au début du XIXème siècle. Cependant le premier

à parler de nombre imaginaire fut le très cartésien Descartes en 1637.

Remarques

· IN est l"ensemble des entiers naturels. C"est l"ensemble des entiers positifs ou nuls. Dans IN l"équation x + 1 = 0 n"a pas de solution. Cette équation a une solution notée -1 , élément de l"ensemble ZZ .

· ZZ est l"ensemble des entiers relatifs. C"est l"ensemble des entiers positifs, négatifs ou nuls.

IN est contenu dans ZZ , ce que l"on note IN Ì ZZ . Dans ZZ l"équation 2x = 1 n"a pas de solution.

Cette équation a une solution notée

1 2 , élément de l"ensemble QI .

· QI est l"ensemble des nombres rationnels

C"est l"ensemble de tous les nombres de la forme

p q avec p Î ZZ et q Î ZZ * . QI contient ZZ . On a donc IN Ì ZZ Ì QI .

Dans QI l"équation x

2 = 2 n"a pas de solutions.

Cette équation a deux solutions notées

2 et -2 , éléments de l"ensemble IR.

· IR est l"ensemble des nombres réels. C"est l"ensemble des abscisses de tous les points d"une droite.

IR contient QI . On a donc IN Ì ZZ Ì QI Ì IR .

Dans IR l"équation x

2 = -1 n"a pas de solutions.

Cette équation a deux solutions notées i et -i , solutions de l"ensemble CI .

· CI est l"ensemble des nombres complexes.

C"est l"ensemble des nombres de la forme a + ib avec a Î IR et b Î IR. CI contient IR . On a donc IN Ì ZZ Ì QI Ì IR Ì CI .

Ch4 : Nombres complexes (TS)

- 2/18 -

Définition

On appelle corps des nombres complexes, et on note CI un ensemble contenant IR tel que : · Il existe dans CI un élément noté i tel que i 2 = -1. · Tout élément de CI s"écrit sous la forme a + ib , où a et b sont des réels.

· CI est muni d"une addition et d"une multiplication qui suivent les mêmes règles de calcul que celles

connues dans ô Un nombre complexe sera souvent représenté par la lettre z.

Nombres complexes particuliers

Soit un nombre complexe z = a + ib avec a Î IR et b Î IR . · si b = 0 , on a z = a , z est un réel.

· si a = 0 , on a z = ib , on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Remarques

· IR correspond à l"ensemble des points sur une droite. Un nombre réel x correspond au point d"abscisse x sur la droite. On peut donc toujours comparer deux nombres réels.

· CI , ensemble des nombres a + ib avec a Î IR et b Î IR correspond à l"ensemble des points d"un plan.

Un nombre complexe a + ib avec a Î IR et b Î IR correspond au point du plan de coordonnées (a ; b).

On ne peut donc pas comparer deux nombres complexes : il n"y a pas de relation d"ordre dans CI .

On ne peut donc pas dire qu"un nombre complexe z est inférieur à un nombre complexe z" ou qu"un

nombre complexe z est positif (c"est-à-dire supérieur à 0).

Définition :

Soit un nombre complexe z .

L"écriture z = a + ib , où a et b sont des réels, est appelée forme algébrique du nombre complexe z.

a est appelé partie réelle de z, et b partie imaginaire de z : on note a = Re(z) et b = Im(z).

Remarque

· La partie réelle de z et la partie imaginaire de z sont des nombres réels.

Propriété :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C"est-à-dire que si a, b, a", b" sont des réels, on a a + ib = a" + ib" Û (a ; b) = (a" ; b") Û ??? a = a"b = b"

Exercice 01

Soit z = 2 + 3i ; z" = i - 5.

Calculer et écrire sous la forme algébrique z + z" ; z - z" ; 2z - 3z" ; zz" ; z

2 z + z" = 2 + 3i + i - 5 = -3 + 4i z - z" = 2 + 3i - (i - 5) = 2 + 3i - i + 5 = 7 + 2i

2z - 3z" = 2(2 + 3i) - 3(i - 5) = 4 + 6i - 3i + 15 = 19 + 3i

zz" = (2 + 3i)(i - 5) = 2i - 10 + 3i

2 - 15i = 2i - 10 - 3 - 15i = - 13 - 13i

z

2 = (2 + 3i)2 = 22 + 2 x 2 x 3i + (3i)2 = 4 + 12i + 9i2 = 4 + 12i - 9 = -5 + 12i

Exercice 02

1°) Calculer (3 + 2i)(3 - 2i). En déduire la forme algébrique de 1

3 + 2i

(utiliser l"expression conjuguée).

2°) Déterminer la forme algébrique des nombres complexes : 1

1 + i ; 1

3 - i ; 1

i

1°) (3 + 2i)(3 - 2i) = (3)

2 - -(2i)2 = 9 - (-4) = 9 + 4 = 13

Ch4 : Nombres complexes (TS)

- 3/18 -

La forme algébrique de 1

3 + 2i est 3

13 - 2

13 i

2°) La forme algébrique de

1 1 + i est 1 2 - 1 2 i

La forme algébrique de

1 3 - i est 3

10 + 1

10 i

La forme algébrique de

1 i est - i

II. REPRESENTATION GRAPHIQUE

Un nombre complexe est formé de deux nombres réels. Or deux nombres réels forment un couple de

coordonnées. Ainsi, si le plan est muni d"un repère orthonormé on peut repérer tout point par un nombre

complexe. a) Affixe

Définition :

On se place dans le plan rapporté à un repère orthonormal direct (O;®u,®v) . ■ Au point M de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a +i b est l"affixe de M

■ Au vecteur ¾®V de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a + ib est l"affixe de ¾®V

■ Lorsqu"on repère un point ou un vecteur par son affixe dans un repère orthonormal direct, on dit qu"on se

place dans le plan complexe.

Exercice 03

Placer dans le plan complexe, les points d"affixes : z

1 = 2 + 3i ; z2 = 3 + i ; z3 = -1 + 2i ; z4 = 2 - i ; z5 = i

z

6 = -i ; z7 = 1 ; z8 = -i - 3 ; z9 = 2z1 - 3z2 ; z10 = z3(z4 - z2)

Propriétés

Si M a pour affixe z = a + ib et si M" a pour affixe z" = a" + ib" , avec a, b, a", b" réels, alors

· le vecteur ¾®MM" a pour affixe z" - z = (a" - a) + (b" - b)i

· OM = ||¾®OM|| = a2 + b2

· MM" = ||¾®MM"|| = (a" - a)2 + (b" - b)2 · le milieu I de [MM"] a pour affixe zI = z + z" 2 Si

¾®V a pour affixe z et

¾®V " pour affixe z", alors

¾®V +

¾®V " a pour affixe z + z".

Si k est un réel, alors k¾®V a pour affixe k z. b) Conjugué

Définition

Soit z un nombre complexe de forme algébrique a + ib. On appelle conjugué de z le nombre complexe noté -z tel que -z = a - ib.

Remarque

Si M est le point d"affixe z, le point M" d"affixe ¾z est symétrique de M par rapport à l"axe des abscisses.

Ch4 : Nombres complexes (TS)

- 4/18 -

Exercice 04

Étant donné un point M d"affixe z = a + ib , avec a et b réels. Placer ···· le point M" d"affixe z" = a - ib , ···· le point M" d"affixe z" = -a + ib , ···· le point M"" d"affixe z"" = -a - ib = - z .

Exercice 05

Soit z = 3 + 5i et z" = -2 + 3i.

Calculer

¾¾¾¾z ; ¾¾¾¾z" ; ¾¾¾¾z + ¾¾¾¾z" ; z + z" ; z + z" ; ¾¾¾¾z.¾¾¾¾z" ; zz" ; zz" .

-z = 3 - 5i -z" = -2 - 3i -z + -z" = 3 - 5i - 2 - 3i = 1 - 8i z + z" = 3 + 5i - 2 + 3i = 1 + 8i z + z" = 1 + 8i = 1 - 8i ¾z.¾z" = (3 - 5i)(-2 - 3i) = -6 - 9i + 10i +15i2 = -6 + i - 15 = -21 + i zz" = (3 + 5i)(-2 + 3i) = -6 + 9i - 10i +15i

2 = -6 - i - 15 = -21 - i

zz" = -21 - i = -21 + i

Propriétés

Pour tous nombres complexes z et z", on a :

· ¾z = z

· z.¾z est un réel positif

· z + z" = ¾z + ¾z" ; z - z" = ¾z - ¾z" ; zz" = ¾z.¾z"

· Si z" ¹ 0 (())

1 z" = 1 z" ; (()) z z" = ¾z z"

· Re(z) = z +

¾z

2 ; Im(z) = z -

¾z 2i · z est réel Û z = ¾z ; z est imaginaire pur Û z = - ¾z

Démonstrations :

Soient les nombres complexes écrits sous la forme algébrique : z = a + ibi et z" = a" + ib".

· -z = a - ib donc ¾z = a + ib = z

· z.

¾z = (a + ib)(a - ib) = a2 - (ib)2 = a2 - (-b2) = a2 + b2 donc z.¾z est un réel positif .

· z + z" = a + ib + a" + ib" = (a+a") + i(b+b") comme (a+a") et (b+b") sont des réels, on obtient z + z" = (a+a") - i(b+b") = a - ib + a" - ib" = ¾z + ¾z" · zz" = (a + ib)(a" + ib") = aa" + iab" + ia"b + bb"i

2 = (aa" - bb") + i(ab" + a"b)

comme (aa" - bb") et (ab" + a"b) sont des réels, on obtient zz" = (aa" - bb") - i(ab" + a"b).

D"autre part

¾z.¾z" = (a - ib)(a" - ib") = aa" - iab" - ia"b + bb"i 2 = (aa" - bb") - i(ab" + a"b) donc zz" = ¾z.¾z"

· Si z" # 0 1

z" = 1 a" + b"i = a" - b"i (a" + b"i)(a" - b"i) = a" - b"i a"2 + b"2 = a" a"2 + b"2 +i - b" a"2 + b"2 Comme a" a"

2 + b"2 et - b"

a"2 + b"2 sont des réels, on en déduit (()) 1 z" = a" a"2 + b"2 + ib" a"2 + b"2

D"autre part

¾z" = a" - ib", donc 1

¾z" = 1

a" - b"i = a" + b"i (a" - b"i)(a" + b"i) = a" + b"i a"2 + b"2 = a" a"

2 + b"2 + ib"

a"2 + b"2 Donc 1 z" = 1 z"

Ch4 : Nombres complexes (TS)

- 5/18 -

· Si z" # 0 (())

z z" = (())z x 1 z" = -z x (()) 1 z" (d"après la propriété sur le produit) -z x 1 z" (d"après la propriété précédente) ¾z z"

· z +

¾z

2 = a + bi + a - bi

2 = 2a

2 = a = Re(z) ; z -

¾z

2i = a + bi - (a - bi)

2i = 2bi

2i = b = Im(z)

· z =

¾z Û a + ib = a - ib Û a + ib - a + ib = 0 Û 2ib = 0 Û b = 0 Û Im(z) = 0 Û z réel

· z = -¾z Û a + ib = -a + ib Û 2a = 0 Û a = 0 Û Re(z) = 0 Û z imaginaire pur

Exercice 06

1°) Écrire sous la forme algébrique les nombres complexes suivants :

1

2 + 7i

; 43 - i ; 2 - i

5 + 3i ; i

1 - 3i ; 2 + i

i

2°) Écrire plus simplement le nombre complexe

7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i

1°)

1

2 + 7i

= 2 - 7i (2 + 7i)(2 - 7i) = 2 - 7i

22 - (7i)2 = 2 - 7i

4 + 49 = 2

53 - 7

53 i
4

3 - i = 4(3 + i)

3 - i)(3 + i) = 4(3 + i)

3 2 - i 2 = 4(3 + i)

3 + 1 = 4(3 + i)

4 = 3 + i

2 - i

5 + 3i

= (2 - i)(5 - 3i) (5 + 3i)(5 - 3i) = 10 - 6i - 5i + 3i 2

52 - (3i)2 = 10 - 11i - 3

25 + 9 = 7

34 - 11

34 i
i

1 - 3i

= i(1 + 3i) (1 - 3i)(1 + 3i) = i - 3i 2

12 - (3i)2 = i + 3

1 + 9 = 3

10 + 1

10 i 2 + i i = (2 + i)(i) i

2 = 2i - 1

-1 = 1 - 2i

2°) 7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i = (7 + 5i)(27 + 2i)

(2

7 - 2i)(27 + 2i) + (27 - 2i)(7 - 5i)

7 + 5i)(7 - 5i)

= 14 + 2

7 i + 107 i - 10

28 + 4 + 14 - 107 i - 27 i - 10

7 + 25

= 4 + 12 7 i

32 + 4 - 127 i

32 = 8

32 = 1

4

III. FORME TRIGONOMETRIQUE

Rappel

Le plan étant rapporté à un repère orthonormal direct (O;®u,®v) , soit

M un point de coordonnées (a ; b) .

Si M ¹ O, on dit que (r ; q) est un couple de coordonnées polaires de

M lorsque : r = OM et q = (

®u ,

¾®OM) [2p]

On a alors r =

a2 + b2 ; a = r cos q et b = r sin q

Si z est l"affixe de M, z = a + ib = r

cos q + i r sin q = r (cos q + i sin q) a) Module

Définition

Tout nombre complexe non nul z peut-être écrit sous la forme :

z = r(cos q + i sin q) , avec q Î IR et r Î IR+* , qui est une forme trigonométrique de z.

M( z) r a b q O

Ch4 : Nombres complexes (TS)

- 6/18 -

Propriété

Si deux nombres complexes z et z" sont écrits sous forme trigonométrique : z = r(cos q + i sin q) et z" = r" (cos q" + i sin q"), on a : z = z" Û ??? r = r" q = q" [2]

Définition

Soit le nombre complexe z de forme algébrique a + ib et soit M le point d"affixe z. On appelle module de z le nombre réel positif r = OM = a2 + b2

On note r = | z |

Remarque

La notation | z | ne risque pas de prêter à confusion avec la notation de la valeur absolue puisque lorsque x

est un nombre réel, on a r = OM = | x | .

Pour un réel x, |

x | pourra être lu indifféremment "valeur absolue de x" ou "module de x".

Pour un nombre complexe non réel z , |

z | sera lu impérativement "module de z".

Exercice 07

1°) Calculer le module de chacun des nombres complexes :

z

1 = 3 + 4i z2 = 1 - i z3 = 5 - i

2 z4 = 3

z

5 = i - 4 z6 = i z7 = -5 z8 = 2

2 + 2 2 i

2°) Donner les formes trigonométriques de :

z

1 = 1 + i z2 = 3 + i z3 = 1 - i3 z4 = i

1°)

|z

1| = | 3 + 4i | = 32 + 42 = 9 + 16 = 25 = 5

|z

2| = | 1 - i | = 12 + (-1)2 = 1 + 1 = 2

|z

3| = 5 - 1

2 i = 52 + (())- 1

2

2 = 25 + 1

4 = 101

4 = 101

2 |z

5| = | i - 4 | = | -4 + 1i | = (-4)2 + 12 = 17

|z

6| = | i | = | 0 + 1i | = 02 + 12 = 1 = 1

|z

7| = | -5 | = 5 (-5 Î IR et la valeur absolue de -5 est 5)

|z

8| = 2

2 + 2

2 i = (())

2 2

2 + (())

2 2

2 = 2

4 + 2

4 = 1 = 1

2°) La forme trigonométrique de z est une écriture z = r(cos

q + i sin q) avec r = OM = | z | et q Î IR ■ z

1 = 1 + i on a alors r1 = | z1 | = OM1 = 12 + 12 = 2

On peut écrire z

1 = 2 (())

1

2 + 12 i = 2 (())

2 2 + 2

2 i = 2 (())cos p

4 + i sin p

4 ■ z

2 = 3 + i on a alors r2 = | z2 | = OM2 = 3

2 + 12 = 3 + 1 = 4 = 2

On peut donc écrire z

2 = 2 (())

3 2 + 1

2 i = 2 (())cos p

quotesdbs_dbs49.pdfusesText_49