[PDF] Exercices corrigés de probabilités et statistique



Previous PDF Next PDF







Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques



Exercices Corrigés Statistique et Probabilités

et les trois quartiles Q 1, Q 2 et Q 3 c Calculer les valeurs de la dispersion de la distribution : variance, l’écart type et l’intervalle interquartile d Tracer le diagramme en bâtons et la boite à moustaches de cette distribution Correction de l’exercice 2 a Tableau statistique X ni fi Fi xi*fi xi2*fi 1 0 1515 0 15 0 15 0 15



Exercices et problèmes de statistique et probabilités

ment, de ne proposer dans cette partie, que des exercices abordant des notions et des calculs de probabilité qui sont utilisés en statistique : Théorème Central-Limite (ou théorème de la limite centrale), Lois de probabilités fréquemment utilisées en statistique (Loi normale, du Khi-deux,



Exercices corrigs de statistiques infrentielles

1 Calculer la moyenne et l'écart type des durées de traitement des dossiers de cet échantillon 2 En déduire les estimations ponctuelles de la moyenne m et de l'écart type σ de la population des dossiers 3 Donner une estimation de m par intervalle de confiance au seuil de risque 5 Solution 1 On a me = 26,3 et σe = 12,3 2



Probabilités Exercices corrigés - Login - CAS

Probabilités exercices corrigés Correction Lenombretotal depossibilités derangement est n 1 Supposons queA est en premier, B est derrière, il reste (n−2 ) répartitions possibles CommeA peut êtreplacén’importeoù dans la fileavec B derrièrelui, il y a (n−1) places possibles pour A et donc la probabilité (1 ) 1 n n n −



Corrig e - S erie 1 Rappels des probabilit es et statistique

Facult e des sciences et de g enie D epartement de math ematiques et de statistique STT-2902 Automne 2012 Emmanuelle Reny-Nolin Corrig e - S erie 1 Rappels des probabilit es et statistique descriptive Exercice 1 a) Binomiale(10, 0 25) b) G eom etrique(1=13983816) c) Pascal(5, 0 20)



Statistique et probabilités - Dunod

Exercices 189 Énoncés 189 Corrigés 190 7 Estimation 195 I Définition d’un estimateur 196 II Propriétés d’un estimateur 198 A Biais d’un estimateur 199 B Convergence d’un estimateur 200 C Estimateur optimal 201 X STATISTIQUE ET PROBABILITÉS



COMBINATOIRE PROBABILITES ET STATISTIQUES

Les localit´es A et B sont reli´ees par n1 = 3 routes diff´erentes et les localit´es B et C par n2 = 2 routes diff´erentes; alors il y a N = 3×2 = 6 mani`eres diff´erentes de se rendre par la route de la localit´e A a la localit´e C Exemple 7 Le nombre de plaques comportant une lettre dans {a,b,c,d,e} et un nombre entre 1 et 4 vaut



Cours de probabilites et statistiques´

A[B r¶eunion de A et B A ou B A\B intersection de A et B A et B Ac ou A compl¶ementaire de A ¶ev¶enement contraire de A A\B =; A et B disjoints A et B incompatibles 1 3 Probabilit¶e On se limite dans ce cours µa ¶etudier les univers d¶enombrables La probabilit¶e d’un ¶ev¶enement est une valeur num¶erique qui repr¶esente la

[PDF] statistique et probabilité exercices corrigés pdf

[PDF] STATISTIQUE ex non corrige

[PDF] statistique excel graphique

[PDF] Statistique exercice devoirs

[PDF] statistique exercices corrigés s1

[PDF] Statistique exercise 1 / 10

[PDF] Statistique exercise 7 / 10

[PDF] Statistique fonction donné représentation dans un repère

[PDF] statistique inférentielle exercices corrigés

[PDF] statistique inférentielle exercices corrigés pdf

[PDF] statistique math 1ere s

[PDF] statistique math 3eme

[PDF] statistique math seconde

[PDF] statistique math terminale

[PDF] statistique mathématique

Exercices corrigés de

probabilités et statistique

Université Paris 1 Panthéon-Sorbonne

Cours de deuxième année de licence de sciences économiques

Fabrice Rossi & Fabrice Le Lec

Cette oeuvre est mise à disposition selon les termes de la licence Creativ e Commons Paternité - Partage à l"Identique 3.0 non transposé

Table des matières

Table des matières

iii

1 Expériences aléatoires et probabilités

1

2 Conditionnement et indépendance

11

3 Variables aléatoires discrètes

25

3.1 Loi, fonction de répartition, espérance et variance

. . . . . . . . 25

3.2 Lois discrètes classiques

. . . . . . . . . . . . . . . . . . . . . . 39

3.3 Variable fonction d"une autre variable

. . . . . . . . . . . . . . 44

3.4 Couples de variables aléatoires

. . . . . . . . . . . . . . . . . . 48

4 Variables aléatoires absolument continues

55

4.1 Densité, fonction de répartition et moments

. . . . . . . . . . . 55

4.2 Lois continues classiques

. . . . . . . . . . . . . . . . . . . . . . 63

Évolutions de ce document

71
iii IntroductionCe document propose des exercices corrigés illustrant le cours de probabilités et statistique. Les corrections sont abondamment commentées pour faciliter la compréhension et expliciter le raisonnement qui conduit à la bonne solution. On trouve ainsi à la suite de l"énoncé d"un exercice une série de commentaires encadrant des éléments de correction. La réponse attendue lors d"une évaluation est constituée de l"ensemble des éléments de correction, à l"exclusion, bien entendu, des commentaires. Pour faciliter la séparation entre correction et commentaires, les éléments de correction sont présentés comme suit :Correction

Un élément de correction.

Pour profiter au maximum de ce recueil, il est très vivement conseillé de lire l"énoncé seulement, puis de rédiger une correction exhaustive (et pas seulement un brouillon) en se mettant dans les conditions d"une évaluation, c"est-à-dire en se chronométrant, en n"utilisant pas de calculatrice et, enfin, en s"abstenant de consulter des notes de cours ou d"autres documents. Une fois la correction rédigée, on pourra la confronter à la correction type, en repérant notamment les justifications manquantes. On pourra aussi rechercher dans les commentaires un éventuel raisonnement faux typique, si la correction rédigée est fortement

éloignée de la correction type.

v

Chapitre 1

Expériences aléatoires et

probabilités

Exercice 1.1

ÉnoncéOn étudie les connexions d"internautes à un site web. Celui-ci propose six versions de son contenu, réparties en trois versions anglaises (notéesen) et trois versions françaises (notéesfr). Pour chaque langue, les trois versions sont les suivantes : une version normale (n), une version pour les petits écrans comme ceux des téléphones (p) et une version pour les écrans de taille moyenne comme ceux des tablettes (m). En étudiant l"historique des connexions, on constate que les versions ne sont pas utilisées de façon uniforme. Plus précisément, si on choisit un internaute connecté au hasard, la probabilité de tomber sur chacune des versions est donnée par la table suivante : version(fr;n) (fr;p) (fr;m) (en;n) (en;p) (en;m)P(fversiong)a 521
121
421
b321 Dans la table, chaque version est désignée par sa langue et son type. L"ensemble des six versions forme l"univers . Les lettresaetbdésignent des paramètres à déterminer.

Question 1

Quelles propriétés doivent vérifieraetbpour quePsoit bien une probabilité sur

Question 2

On constate que le site a deux fois plus d"utilisateurs anglophones que d"utilisateurs francophones. En déduiteaetb.

Question 3

Quel pourcentage d"utilisateurs du site consultent la version pour petit écran? Dans cet exercice, l"univers est déjà fixé et l"objectif est de construire une proba- bilité sur cet univers. Les questions ont pour objectif de tester la connaissance des propriétés d"une probabilité. 1

2Chapitre 1. Expériences aléatoires et probabilitésCorrectionPour quePsoit une probabilité sur

, il faut queP(fversiong)2[0;1] pour toute version du site web. En particulier, on doit donc avoir :

P(f(fr;n)g) =a2[0;1];

P(f(en;p)g) =b2[0;1]:

De plus, on doit avoirP(

) = 1. Or, est l"union disjointe de tous les évènements élémentaires etP( )est donc la somme des probabilités indiquées dans le tableau. On a donc : P( ) =a+521 +121
+421
+b+321 = 1; soit a+b=821 Il est fréquent que la solution proposée ne soit pas aussi bien justifiée que ce qui précède. Il est pourtant important de ne pas oublier les conditions de la forme a2[0;1]et surtout de justifier qu"on peut faire la somme des valeurs données dans le tableau. Il se pourrait en effet que ne soit pas couvert complètement par les éléments du tableau (imaginons ici une version allemande du site pour laquelle on ne donne pas de probabilités précises), et il faudrait donc connaître la probabilité de l"ensemble des évènements élémentaires listés dans le tableau pour remplacer l"analyse basée surP( ) = 1.Correction Le site ayant deux fois plus d"utilisateurs anglophones que francophones, on suppose queP(fversion anglaiseg) = 2P(fversion françaiseg). Or l"évène- mentfversion anglaisegest l"union disjointe des trois évènementsf(en;n)g, f(en;p)getf(en;m)get donc la probabilité de l"évènement est la somme des probabilités des trois évènements élémentaires. Donc, d"après le tableau, on a

P(fversion anglaiseg) =421

+b+321 =b+721

De la même façon, on trouve que

P(fversion françaiseg) =a+521

+121
=a+621 3 soit finalement b+721 = 2 a+621 :En combinant cette équation avec le résultat obtenu à la question précédent,

à savoira+b=821

, on trouve b+721 = 2821 b+621 soitb=13eta=121. On constate queaetbsont bien des éléments de [0;1]ce qui montre que cette solution est acceptable. Comme pour la première question, il faut justifier les réponses en évoquant au moins une fois la décomposition d"un évènement bien choisi en évènements dont on connaît les probabilités. La dernière question se traite de cette façon aussi.Correction L"évènementfpetit écrangest l"union disjointe des évènementsf(en;p)g etf(fr;p)g, donc sa probabilité est la somme des probabilités de ces deux

évènements. On obtient ainsi :

P(fpetit écrang) =P(f(en;p)g) +P(f(fr;p)g) =521 +b=1221 :Exercice 1.2

Énoncé

On place dans un sac 5 billets de 5e, 7 billets de 10eet 10 billets de 20e. On choisit au hasard une poignée de 8 billets, chaque billet ayant la même probabilité d"être attrapé. Question 1Quelle est la probabilité de n"avoir choisi aucun billet de 5e?

Question 2

Quelle est la probabilité d"avoir obtenu uniquement des billets de 20e?

Question 3

Quelle est la probabilité d"avoir obtenu au moins un billet de chaque valeur?

Question 4

On recommence l"expérience en tirant les billets un par un et en remettant le billet dans le sac après son tirage. Calculer les probabilités des trois évènements ci-dessus dans cette nouvelle expérience. Comme dans tout exercice de probabilité qui ne fait pas intervenir de variables aléatoires, on doit commencer la résolution par la définition de l"univers associé à l"expérience. On rencontre ici une difficulté classique : les billets d"une catégorie ne sont pas (facilement) discernables. On pourrait donc être tenté

4Chapitre 1. Expériences aléatoires et probabilitésde tenir compte de ce fait dans

: c"est en général unemauvaise idée. On suppose donc les billets discernables (numérotés, par exemple).Correction On suppose les billets discernables. On appellec1;:::;c5les 5 billets de 5 e,d1;:::;d7les 7 billets de 10eetv1;:::;v10les 10 billets de 20e. On note l"ensemble des billetsB, avec

B=fc1;:::;c5;d1;:::;d7;v1;:::;v10g:

L"univers de l"expérience aléatoire,

, est constitué de tous les ensembles de8billets distincts, soit donc =ffb1;:::;b8g j 8i; bi2Bet8j6=i; bi6=bjg: La définition de l"univers est ici très formelle. On peut se contenter d"une définition plus informelle, à condition de bien faire ressortir dans celle-ci deux éléments cruciaux de l"énoncé : le nombre d"éléments choisis (ici 8) et la nature du tirage. Ici, on indique qu"on tire une poignée de billets, ce qui implique qu"il n"y a pas de remise et qu"il n"y a pas d"ordre. Ceci est traduit mathématiquement par le fait qu"on considère un ensemble de billets (et pas une liste) et que les billets sont distincts. Ces deux mots clé (ensembleet distinct) doivent impérativement apparaître dans la réponse. Il faut aussi faire apparaître l"ensemble des objets dans lequel les sous-ensembles sont choisis (ici, B).

Il faut maintenant définir laprobabilitésur

. Comme dans de nombreuses situations, on fait une hypothèse naturelle d"équiprobabilité, ce qui transforme le calcul d"une probabilité en celui de la taille d"un ensemble.Correction Les billets étant équiprobables, on suppose que la probabilité est uniforme que et donc que pour tout évènementA, sa probabilitéP(A)est donnée par

P(A) =jAjj

j:

On sait quej

jest donné parC822car il s"agit de l"ensemble des sous- ensembles de cardinal8de l"ensembleBqui est lui même de cardinal 22.
Notons qu"il est important de justifier brièvement le choix de la probabilité uniforme (comme c"est fait ici) et de rappeler le mode de calcul des probabilités dans cette situation. Une fois l"expérience décrite par son univers et la probabilité associée, on peut passer aux questions proprement dites. En général, les " solutions »

5obtenues en s"attaquant directement aux questions sans passer par la phase de

modélisation sont totalement fausses.Correction Soit l"évènementA=fn"avoir aucun billet de 5eg. Il est clair queApeut aussi s"exprimer

A=favoir uniquement des billets de 10eet de 20eg:

On cherche donc les sous-ensembles de 8 billets distincts choisis dansB0, l"ensemble des17billets de 10eet 20e. On en déduit alors quejAj=C817, puis que

P(A) =C817C

822=17!9!8!

14!8!22!

=1716 102221 15'0;076 Notons que le résultat attendu est simplement celui qui fait apparaître les formules explicites pour lesCpn. La simplification du résultat et la valeur numérique approchée ne doivent pas être fournies en général. On peut interpréter le résultat sous forme d"un tirage séquentiel. Il est clair en effet que la probabilité de tirer un unique billet qui ne soit pas de 5eest de1722. Si on tire ensuite un deuxième billet sans remettre le premier, il ne reste plus que 21 billets, dont seulement 16 ne sont pas de 5e. La probabilité de ne pas tomber sur un billet de 5edevient donc1621, puis1520et ainsi de suite jusqu"à1015pour le huitième billet. En formalisant ce raisonnement et en s"appuyant sur la notion de probabilités conditionnelles, on peut retrouver le résultat surP(A). Il est cependantbeaucoup plus simplede déterminer la taille deAen s"appuyant sur des propriétés connues. Notons qu"il ne faut surtout pas chercher à déterminer la composition de la poignée de billets ne contenant pas de billets de 5eau risque de perdre beaucoup de temps. Cet exercice se différencie donc d"autres exercices dansquotesdbs_dbs20.pdfusesText_26