[PDF] Exo7 - Exercices de mathématiques



Previous PDF Next PDF







Y j Y AGRÉGATIONINTERNEDEMATHÉMATIQUES Y j Y

2 SecondePartie (3)On se propose de montrer que toute matrice 2 2 de trace nulle est semblable à une matricedonttouslesélémentsdiagonauxsontnuls



Matrices - Page des EC1 de Ginette

109 Matrice symétrique de trace nulle 1 Soit M ∈Mn(K) On suppose que tM = M +tr(M)In Montrer que M est symétrique et de trace nulle 2 La réciproque est-elle vraie? 3 Ici n = 3 Montrer que les matrices de l’ensemble n M ∈M3(K) tM = M +tr(M)I3 o s’écrivent comme combinaison linéaire de 5 matrices à dé-terminer 110 Le 1 1−x



Exercices de Khôlles de Mathématiques, troisième trimestre

Exercice 21 4 Soit A une matrice de M n(K) de trace nulle 1 Montrer que A est semblable à une matrice de diagonale nulle 2 Montrer qu'il existe deux matrices X et Y de M n(K) de trace nulle qui véri ent A = XY −YX Solution 22 Semaine 22 - Calculs de primitives, calculs de rangs, matrices Khôlleur: Mme Miquel Exercice 22 1 (Oral Ulm



CHAPITRE I : MATRICES 1 Trace

cours du mercredi 25/1 CHAPITRE I : MATRICES 1 Trace La trace d’une matrice carrée Aest la somme de ses coefficients diago-naux: trA= Xn i=1 A i;i: Proposition1 1 Soient A2M



Exo7 - Exercices de mathématiques

Montrer que toute matrice de trace nulle est semblable à une matrice de diagonale nulle Correction H [005662] Exercice 13 **** Soient A un élément de M n(C) et M l’élément de M 2n(C) défini par blocs par M = A 4A A A Calculer detM Déterminer les éléments propres de M puis montrer que M est diagonalisable si et seulement si A est



DM 18 : matrices magiques - joffrempsi1

aussi magique et sym etrique et la trace de A′ est nulle Alors par b), A′ est de la forme A′= M 2 ou M 2 est la matrice du b) Donc A= M 2 +t~3E La r ecip est triviale : toute matrice de la forme M 2 + E est magique et sym etrique par stabilit e de ces prop par C L On conclut que MG ∩S 3(R) =RM 2 ⊕RE



Algèbre générale - wwwnormalesuporg

Corrigé 10 a)On procède par récurrence sur la taille de la matrice Pour une matrice de taille 1, il n'y a rien à dire Soit Ade trace nulle et de taille n Supposons que pour tout vecteur x, la famille (x;Ax) soit liée; alors Aest une homothétie, donc est nulle Sinon, il existe un vecteur x tel que la famille (x;Ax) soit libre



Espaces euclidiens – corrigé

a) Montrer que l’ensemble Hdes matrices de trace nulle est un sous-espace vectoriel de M n(R), et en donner la dimension b) Soit J la matrice dont tous les coefficients sont égaux à 1 Calculer d(J;H) a) La trace est une application linéaire donc H= Ker(tr) est un sous-espace vectoriel de M n(R) Son image est



Réduction de matrices et endomorphismes

1 5 Matrice de rang 1 : Soit Aune matrice de M n(R) a) Montrer que rg (A) = 1 si et seulement si il existe deux matrices colonnes U et V non nulles telles que A= U tV b) Soit Aune matrice de rang 1 Montrer que Aest diagonalisable si et seulement si rT (A) 6= 0 c) Si Aest une matrice de rang 1, calculer Ak pour tout entier k∈ N



MPSI 2 : DL 07 - Free

MPSI 2 : DL 07 pour le 26 mars 2003 Dans le probl`eme, Ed´esigne un R-ev de dimension n≥ 2 On notera Dn(R) l’ensemble des matrices diagonales de Mn(R) Eij d´esigne la matrice de la base canonique de Mn(R) avec un coefficient 1 `a l’intersection de la

[PDF] querelle des anciens et des modernes jean de la fontaine

[PDF] anecdote sur anne frank

[PDF] exercice montrer que deux matrices sont semblables

[PDF] fontenelle

[PDF] vidéo anne frank

[PDF] matrice semblable exemple

[PDF] querelle des anciens et des modernes la fontaine

[PDF] anne frank reportage

[PDF] autoportrait anne frank

[PDF] pere d anne frank

[PDF] matrice de transition graphe probabiliste

[PDF] origine de la querelle des anciens et des modernes

[PDF] matrice de transition markov

[PDF] matrice de transition d'état

[PDF] journal anne frank résumé

Exo7 - Exercices de mathématiques Exo7

Réduction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1**SoitA=0

@1 2 2 2 1 2

2 2 11

A . Pournentier relatif donné, calculerAnpar trois méthodes différentes. @3 0 0 8 4 0

5 0 11

A @3 1 0 41 0
4 821 A 1.

Vérifier que An"est pas diagonalisable.

2.

Déterminer K er(AI)2.

3. Montrer que Aest semblable à une matrice de la forme0 @a0 0 0b c 0 0b1 A 4.

Calculer Anpournentier naturel donné.

Vérifier quefest un endomorphisme deR2n[X]puis déterminer les valeurs et vecteurs propres def.fest-il

diagonalisable ? etB=X4X.

Vérifier quefest un endomorphisme deEpuis déterminer Kerf, Imfet les valeurs et vecteurs propres def.

Exercice 6***SoitAune matrice rectangulaire de format(p;q)etBune matrice de format(q;p). Comparer les polynômes

caractéristiques deABetBA. et quevest nilpotent. Montrer que det(u+v) =detu. Montrer queAest nilpotente si et seulement si8k2[[1;n]], Tr(Ak) =0. quefest nilpotent. Soientuetvdeux endomorphismes deEtels que9(a;b)2C2=uvvu=au+bv. Montrer queuetvont un vecteur propre en commun. 1.

Montrer que (E;)est un groupe

2. Soit Aun élément deEtel que9p2N=Ap=I2. Montrer queA12=I2. A A

Calculer detM. Déterminer les éléments propres deMpuis montrer queMest diagonalisable si et seulement si

Aest diagonalisable.

B

BBB@0b:::b

a .........b a:::a01 C CCCA. 2

Montrer que les images dans le plan complexe des valeurs propres deAsont cocycliques. (Indication : pour

calculercA, considérerf(x) =

X+x b+x:::b+x

a+x......... .........b+x a+x:::a+xX+x 1.

Montrer que 1 est v aleurpropre de A.

2.

Soit lune valeur propre deA.

(a)

Montrer que jlj61.

(b) Montrer qu"il e xisteun réel wde[0;1]tel quejlwj61w. Conséquence géométrique ? B

BBB@0:::0 1

.........0 0

1 0:::01

C CCCA

Montrer queAest diagonalisable.

B

BBBBBB@0 1 0:::0

......0 0 ...1

1 0::: :::01

C

CCCCCCA(de formatn>3). DiagonaliserJn.

2.

En déduire la v aleurde

a

0a1:::an2an1

a n1a0a1an2............ a

2...a0a1

a

1a2:::an1a0

3

1.Calculer det (Ps)pour touts2Sn.

2. (a)

Montrer que 8(s;s0)2S2n,PsPs0=Pss0.

(b) On pose G=fPs;s2Sng. Montrer que(G;)est un groupe isomorphe àSn. 3.

Soit A= (ai;j)16i;j6n2Mn(C). CalculerAPs.

4.

T rouverles v aleurspropres d"une matrice de pemutation (on pourra utiliser le résultat hors programme

: toute permutation se décompose de manière unique à l"ordre près des facteurs en produit de cycles à

supports disjoints). caractéristique est scindé surK.

Montrer qu"il existe un couple d"endomorphismes(d;n)et un seul tel quedest diagonalisable,nest nilpotent

netf=d+n. a b:::b b a .........b b:::b a dansC.

8x2R,(j(f))(x) =1x

R x

0f(t)dtsix6=0 et(j(f))(0) =f(0).

1.

Montrer que jest un endomorphisme deE.

2. Etudier l"injecti vitéet la surjecti vitéde j. 3.

Déterminer les éléments propres de j.

que pourk2 f1;2;3g,fk=lku+mkv. Montrer quefest diagonalisable. 4 Exercice 26**IRésoudre dansM3(C)l"équationX2=0 @0 1 0 0 0 1

0 0 01

A Montrer quefetgsont simultanément trigonalisables. communes si et seulement si la matricecA(B)est inversible. inversible si et seulement siPetcfsont premiers entre eux. B

B@1 1 0 0

0 1a0

0 0 1b

0 0 0 11

C CA. Peut-on trouver deux matrices distinctes semblables parmi les quatre matrices M

0;0,M0;1,M1;0etM1;1?

B

BBB@1 0:::0

2 n0:::01 C CCCA. B

BB@0:::0a1.........

0:::0an1

a

1:::an1an1

C CCAoùa1,...,ansontnnombres complexes (n>2).Aest-elle diagonalisable? parfdans chacun des cas suivants : 5 1.A=0 @1 11 1 1 1

1 1 11

A 2.A=0 @2 2 1 1 3 1

1 2 21

A 3.A=0 @66 5 41 10
76 41
A @1 37 2 614 1 371 A

Commutant de

0 @1 01 1 2 1

2 2 31

A

Estable parf. On suppose quefest diagonalisable. Montrer que la restriction defàFest un endomorphisme

diagonalisable deF. entier pair. Correction del"exer cice1 N1ère solution.A=2JI3oùJ=0 @1 1 1 1 1 1

1 1 11

A . On aJ2=3Jet plus généralement8k2N,Jk=3k1J. Soitn2N. Puisque les matrices 2JetIcommutent, la formule du binôme de NEWTONpermet d"écrire A n= (2JI)n= (I)n+nå k=1 n k (2J)k(I)nk= (1)nI+ nå k=1 n k 2 k3k1(1)nk! J = (1)nI+13 nå k=1 n k 6 k(1)nk!

J= (1)nI+13

((61)n(1)n)J 13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A ce qui reste vrai quandn=0.

Soit de nouveaun2N.

((1)nI+13 (5n(1)n)J)((1)nI+13 (5n(1)n)J) =I+13 ((5)n1+(5)n1)J+19 (1(5)n(5)n+1)J2 =I+13 ((5)n1+(5)n1)J+39 (1(5)n(5)n+1)J=I; et donc A n=13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

Finalement

8n2Z,An=13

0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A .2ème solution.Puisque rg(A+I) =1, dim(Ker(A+I)) =2 et1 est valeur propre deAd"ordre au moins

2. La troisième valeur proprelest fournie par la trace :l11=3 et doncl=5. Par suite,cA=

(X+1)2(X5).

De plus,0

@x y z1 A

2E1,x+y+z=0 et doncE1=Vect(e1;e2)oùe1=0

@1 1 01 A ete2=0 @1 0 11 A

De même,

0 @x y z1 A

2E1,x=y=zetE5=Vect(e3)oùe3=0

@1 1 11 A

On poseP=0

@1 1 1 1 0 1 01 11 A etD=diag(1;1;5)et on aA=PDP1.

Calcul deP1. Soit(i;j;k)la base canonique deR3.

8 :e 1=ij e 2=ik e

3=i+j+k,8

:j=ie1 k=ie2 e

3=i+ie1+ie2,8

>:i=13 (e1+e2+e3) j=13 (2e1+e2+e3) k=13 (e12e2+e3) 7 et doncP1=13 0 @12 1 1 12

1 1 11

A . Soit alorsn2Z. A n=PDnP1=13 0 @1 1 1 1 0 1 01 11 A0 @(1)n0 0

0(1)n0

0 0 5 n1 A0 @12 1 1 12

1 1 11

A 13 0 @(1)n(1)n5n (1)n0 5n

0(1)n5n1

A0 @12 1 1 12

1 1 11

A =13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

et on retrouve le résultat obtenu plus haut, le calcul ayant été mené directement avecnentier relatif.

3ème solution.Soitn2N. La division euclidienne deXnparcAfournit trois réelsan,bnetcnet un polynôme

Qtels queXn=cAQ+anX2+bnX+cn. En prenant les valeurs des membres en 5, puis la valeur des deux membres ainsi que de leurs dérivées en1 , on obtient 8 :25an+5bn+cn=5n a nbn+cn= (1)n

2an+bn=n(1)n1,8

:b n=2ann(1)n

35an+cn=5n(1)n+5n

an+cn=(n1)(1)n,8 >:a n=136 (5n+(6n1)(1)n) c n=136 (5n+(30n+35)(1)n) b n=136 (25n+(24n2)(1)n).

Le théorème de CAYLEY-HAMILTONfournit alors

A n=136 136
0 (5n+(6n1)(1)n)0 @9 8 8 8 9 8

8 8 91

A +2(5n(12n+1)(1)n)0 @1 2 2 2 1 2quotesdbs_dbs30.pdfusesText_36