[PDF] CHAPTER 8: MATRICES and DETERMINANTS



Previous PDF Next PDF







CHAPTER 8: MATRICES and DETERMINANTS

(Section 8 1: Matrices and Determinants) 8 06 2) Row Rescaling Example Consider the system: 1 2 x + 1 2 y = 3 y = 4 If we multiply “through” both sides of the first equation by 2, then we



11 CALCULUL DETERMINATILOR

-avantajul consta in reducerea calculului unui determinant de ordinul n la calculul unui singur determinant de ordinul n-1, procedeul putand fi iterativpana cand ajungem la determnanti de ordin 3, pentru care se aplica regulile aferente de calcul



Capitolul 1 Matrice Determinant˘i

2 CAPITOLUL 1 MATRICE DETERMINANT˘I De ni˘tia 1 4 O lege de compozi˘tie intern a " " ^ n X se nume˘ste lege comutativ a dac a 8(x;y) 2X2 avem x y = y x: De ni˘tia 1 5 Fie X o mult˘ime ˘si " " o lege de compozit˘ie intern a^ n X Perechea ordonat a



Some efficient methods for computing the determinants of large

some efficient methods for computing the determinant of a large sparse and block structured ma-trix Tests conducted using randomly generated matrices show the efficiency and robustness of our methods RÉSUMÉ Le calcul de déterminants intervient dans certaines applications scientifiques, comme par



CALCUL MATRICIEL - WordPresscom

2 Application du calcul matriciel • Résolution de systèmes d’équations linéaires – Une matrice A (ou système d’équation linéaire) est dite équivalente ligne à une matrice B (ou système d’équation linéaire ) si B peut être obtenue à partir de A par un nombre fini d’opérations élémentaires sur les lignes telles que :



CALCUL NUMERIC Rezolvarea numeric ă a sistemelor de ecua Ńii

CALCUL NUMERIC Rezolvarea numeric ă a sistemelor de ecua Ńii liniare 3 Algoritmul de calcul al determinan Ńilor numerici Fie dat ă matricea A de ordinul n: Algoritmul de calcul al determinantului unei matrice de ordin n se bazeaz ă direct pe defini Ńie Se va folosi dezvoltarea determinantului dup ă prima linie a matricei



CALCUL MATRICIEL Exercices - bagbouton

1 CALCUL MATRICIEL Exercices EXERCICE 1 : opérations sur les matrices a) Soient les matrices 1 23 456 7 89 01 0 A = et



Exercices 8 Systèmes linéaires et calcul matriciel

14 Un calcul de puissances ♪ Soient a et b, deux nombres complexes Calculer les puissances des matrices suivantes : A ˘ 2 6 4 a¯b 0 a 0 b 0 a 0 a¯b 3 7 5 , B ˘ 2 6 6 6 6 4 a b 0 0 0 a b 0 0 0 a b 0 0 0 a 3 7 7 7 7 5 15 Un calcul de puissances ♪ Soit p 2Ntel que p ˚2 Soit A 2Mp(R) la matrice dont les coefficients sont donnés par



Compléments : calcul matriciel

B est une matrice colonne de plignes B' est une matrice ligne de pcolonnes (Un)est définie par son premier terme U0 et pour tout entier naturel n: Un+1=AUn+B (Vn)est définie par son premier terme V0 et pour tout entier naturel n: Vn+1=VA'n+B' a) On suppose savoir calculer : Akou A'kpour tout entier naturel k(on poseA0=A'0=I) U1=AU0+B U2=A

[PDF] déterminant matrice triangulaire

[PDF] forme canonique de commandabilité

[PDF] représentation d'état exercices corrigés pdf

[PDF] passage fonction de transfert représentation d'état

[PDF] forme modale automatique

[PDF] forme compagne de commande

[PDF] matrice de transfert automatique

[PDF] diagonale d'un carré propriété

[PDF] prix ecran projecta

[PDF] format 10x15 correspondance

[PDF] meilleur ecran videoprojecteur

[PDF] comparatif ecran de projection

[PDF] ecran projection

[PDF] fabriquer son ecran de projection

[PDF] kimex

(Section 8.1: Matrices and Determinants) 8.01

CHAPTER 8: MATRICES and DETERMINANTS

The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa).

SECTION 8.1: MATRICES and SYSTEMS OF EQUATIONS

PART A: MATRICES

A matrix

is basically an organized box (or “array") of numbers (or other expressions). In this chapter, we will typically assume that our matrices contain only numbers.

Example

Here is a matrix of size

23
("2 by 3"), because it has 2 rows and 3 columns:

The matrix consists of 6 entries

or elements.

In general, an

mn matrix has rows and columns and has mn entries.

Example

Here is a matrix of size

22
(an order 2 square matrix): 41
32

The boldfaced entries lie on the main diagonal

of the matrix. (The other diagonal is the skew diagonal (Section 8.1: Matrices and Determinants) 8.02 PART B: THE AUGMENTED MATRIX FOR A SYSTEM OF LINEAR EQUATIONS

Example

Write the augmented matrix for the system:

3+2+=0

2=3

Solution

Preliminaries:

Make sure that the equations are in (what we refer to now as) standard form, meaning that ... • All of the variable terms are on the left side (with , , and ordered alphabetically), and • There is only one constant term, and it is on the right side.

Line up like terms vertically.

Here, we will rewrite the system as follows:

3x+2y+z=0

2xz=3 (Optional) Insert "1"s and "0"s to clarify coefficients.

3x+2y+1z=0

2x+0y1z=3

Warning

: Although this step is not necessary, people often mistake the coefficients on the terms for "0"s. (Section 8.1: Matrices and Determinants) 8.03

Write the augmented matrix:

Coefficients of Right

sides 321
2010
3

Coefficient matrix

Right-hand

side (RHS) We may refer to the first three columns as the -column, the -column, and the -column of the coefficient matrix.

Warning

: If you do not insert “1"s and “0"s, you may want to read the equations and fill out the matrix row by row in order to minimize the chance of errors. Otherwise, it may be faster to fill it out column by column. The augmented matrix is an efficient representation of a system of linear equations, although the names of the variables are hidden. (Section 8.1: Matrices and Determinants) 8.04

PART C: ELEMENTARY ROW OPERATIONS (EROs)

Recall from Algebra I that equivalent equations

have the same solution set.

Example

Solve:

2x1=5 To solve the first equation, we write a sequence of equivalent equations until we arrive at an equation whose solution set is obvious. The steps of adding 1 to both sides of the first equation and of dividing both sides of the second equation by 2 are like "legal chess moves" that allowed us to maintain equivalence (i.e., to preserve the solution set).

Similarly, equivalent systems

have the same solution set.

Elementary Row Operations (EROs)

represent the legal moves that allow us to write a sequence of row-equivalent matrices (corresponding to equivalent systems) until we obtain one whose corresponding solution set is easy to find. There are three types of EROs:

1)Row Reordering

Consider the system:

3=1 +=4 x+y=4 3xy=1

We can switch any two rows.

1 2 31
1114
R 1 2 1 2 new R R 4 1 In general, we can reorder the rows of an augmented matrix in any order. : Do not (Section 8.1: Matrices and Determinants) 8.06

2) Row Rescaling

Example

Consider the system:

1 2 x+ y= y= If we multiply "through" both sides of the first equation by 2, then we obtain an equivalent equation and, overall, an equivalent system: x+y= y= This suggests that, when we solve a system using augmented matrices, We can multiply (or divide) "through" a row by any nonzero constant.

Before:

Rquotesdbs_dbs3.pdfusesText_6