[PDF] Corrigé de l’examen du 26 avril 2012 (durée 2h)



Previous PDF Next PDF







TD 9 : Chaînes de Markov Corrigé

Solution de l’exercice 3 1 Soit i 0 Par la propriété de Markov forte, conditionnellement à F T i, le processus (S T i+n) n 0 a la loi d’une marche simple issue de i, donc Se= (S T i+n i) n 0 est une marche simple sur Z conditionnellementàF T i Deplus,ona T i+1 T i = minfn 0jSe n = 1g; donc conditionnellement à F T i, la variable T i+1



TD 5 : Chaînes de caractères

Exercice 2 Écrire une fonction int nombre_espaces( char ∗ s) qui renvoie le nombre de carac- tères "espace" présents dans la chaîne s Utilisez la fonction char ∗strchr( const char ∗s, int c) qui renvoie l'adresse de la première



Initiation aux processus : Chaînes de Markov (solutions)

Initiation aux processus : Cha^ nes de Markov (solutions) Fabrice Rossi 18 f evrier 2003 1 Espace d’ etat ni 1 1 Exercice 1 1 1 1 Question 1 Pour repr esen ter la cha^ ne, on choisit de num eroter les etats de 1 a 3, dans l’ordre des lignes (ou des



Corrigé de l’examen du 18 avril 2013 (durée 2h)

n 1 sont des suites de v a indépendantes par indépendance des v a X n On a de plus par la question précédente en calculant les lois marginales que P(Y1 1 = 1) = P(Y1 1 = 1) = 1=2, et de même pour Y n 2, ce qui donne et la loi des v a et l’indépendance des deuxsuites f)Lasuite(R1 n) estdoncunesuitedev a i i d deloi 1 2 1 + 1 2



Feuille d’exercices &# 3 : Chaînes de Markov

Exercice 8 Quand les vaches ne regardent pas les trains Sur une route, en moyenne, trois camions sur quatre sont suivis par une voiture, tandis que seule une voiture sur cinq est suivie par un camion Déterminer les proportions de voitures et de camions sur cette route Exercice 9 Un autre exemple de chaîne météo



Corrigé de l’examen du 26 avril 2012 (durée 2h)

UniversitéPaulSabatier(Toulouse3) MagistèreÉconomisteStatisticien M1-Processus Année2011–2012 Corrigé de l’examen du 26 avril 2012 (durée 2h



Série d’exercice Corrigé Préparé par : Zouari Lazhar

(n étant un entier de l’intervalle [15, 30]) Exercice N° 21 Ecrire un programme Pascal permettant de chercher puis d’afficher la plus grande valeur d’un tableau T contenant n entiers (5 ≤ n ≤ 20) ainsi que son indice Dans le cas d’ex aequo, on affiche l’indice de la première occurrence Exercice N° 22



Tp Transmission corrigé - lewebpedagogiquecom

1 Le vélo: transmission par chaine Exercice 2: Coloriez (avec des couleurs différentes) les 6 éléments du système de transmission (vélo sans vitesses) Nommez ces éléments (aidez vous de l'exercice 1 du TP sur le freinage) Pédale , manivelle, plateau , chaîne , pignon, roue arrière Page 1/4



Sujet du bac S Mathématiques Obligatoire 2017 - Pondichéry

Interpréter le résultat dans le contexte de l’exercice 3 La chocolaterie vend un lot de 10 000 tablettes de chocolat à une enseigne de la grande distribution Elle affirme au responsable achat de l’enseigne que, dans ce lot, 90 des tablettes ont un pourcentage de cacao appartenant à l’intervalle [81,7 ; 88,3]



MÉTHODE : COTATION FONCTIONNELLE – LES CHAINES DE COTES

2eme étape : Pour tracer la chaine de cote : - On part de la surface terminale à l’origine de « a » - On trace des cotes qui passent par les surfaces fonctionnelles - On revient sur la surface terminale à l’extrémité de « a » graphe de contact : S1 S3 1/2 2/3 a 1 3 a 1/2 2/3 S3 S1 Chaine de cotes : a3 a2 a2 a3 Vérification :

[PDF] chaine d'acquisition de données

[PDF] chaine de mesure audioprothèse

[PDF] acquisition de données du capteur ? l ordinateur

[PDF] chaine de mesure pdf

[PDF] chaine d'acquisition capteur

[PDF] les capteurs exercices corrigés

[PDF] chaine de markov apériodique

[PDF] chaine de markov apériodique exemple

[PDF] chaine de markov reversible

[PDF] chaine de markov récurrente

[PDF] chaine de markov exemple

[PDF] chaine de markov irreductible exemple

[PDF] chaine de markov exercice corrigé

[PDF] chaine énergétique barrage hydraulique

[PDF] chaine énergétique d'une éolienne

Université Paul Sabatier (Toulouse 3) Magistère Économiste Statisticien

M1 - Processus Année 2011-2012

Corrigé de l"examen du 26 avril 2012(durée 2h) Tous documents interdits. Soyez concis, mais justifiez scrupuleusement ce que vous faites.

Les trois parties sont indépendantes.

Exercice 1 :On considère une chaîne de Markov(Xn)n0surf1;:::;7gde matrice de transitionQ donnée par Q=0 B

BBBBBBB@1=2 1=4 0 1=4 0 0 0

1=2 0 0 0 0 0 1=2

0 0 1=8 0 7=8 0 0

1=4 0 0 0 0 0 3=4

0 1=9 7=9 0 0 1=9 0

0 0 0 0 0 1 0

0 0 0 1 0 0 01

C

CCCCCCCA

a)

Dessiner le graphe de la c haînede Mark ovasso ciéeen précisan tle sprobabilit ésde transitions

entre les différents états. b) Détermi nerles classes d"états récurren tset transitoires. c)

La c haîneest-elle irréductible ?

d)

Calcu lerP3(X2= 6)etP1(X2= 7).

Solution de l"exercice1.

a) Graphe :1253

4761/4

1/21/97/9

1=41=21=43=41/9

17/81/21/8

1

b) On déduit du graphe qu"il y a deux classes récurrentes :f1;2;4;7getf6g, et une classe transiente :

f3;5g. c) Non, sinon elle n"admettrait qu"une seule classe. d) Par la formulePx(X2=y) =Q2(x;y) =P zQ(x;z)Q(z;y), on obtient P

3(X2= 6) =Q(3;5)Q(5;6) =78

19 =772 ;et P

1(X2= 7) =Q(1;2)Q(2;7) +Q(1;4)Q(4;7) =14

12 +14 34
=516 1 Exercice 2 :On définit une suite de variables aléatoires(Sn)n0par S

0=x >0p.s.;et pourn1,Sn=Sn1+"nSn1;

où("n)n1est une suite de v.a. indépendantes et identiquement distribuées de loi12 1+12

1, et où

est un réel tel quejj<1. Soit(Fn)n0la filtration naturelle de(Sn)n0,i.e.Fn=(S0;:::;Sn), pour toutn0. a)

Mon trerque (Sn)n0est une(Fn)n0-martingale.

b) Mon trer(par récurrenc e)que p ourtout n0,Sn>0. c) En déduire qu e(Sn)n0converge p.s., quandntend vers+1. d) On p ose,p ourtout n0,Zn= logSn:Montrer queZn=Zn1+ log(1 +"n). e)

En déduire qu e

Z n= logx+nX k=1log(1 +"k): f)

Calc ulerE(log(1 +"1)), et montrer que

Z nn p.s.!n!112 log(12): g)

En déduire a lorsque Snconverge p.s. quandntend vers l"infini, vers une limite à déterminer.

Solution de l"exercice2.

a)(Sn)est clairement adapté par définition de(Fn). Montrons queSnintégrable pour toutn0. S

0est intégrable car constante. Supposons par récurrence queSn1est intégrable. Alors comme

jj<1etj"nj 1p.s., on ajSnj 2jSn1j, et doncSnest intégrable. Pour toutn0, on a

E(Sn+1jFn) =E(Sn+"n+1SnjFn)

=Sn+SnE("n+1jFn)carSnestFn-mesurable =Sn+SnE("n+1); car"n+1est indépendante deFnpar construction. Comme"n+1est centrée,i.e.E("n+1) = 0, on obtientE(Sn+1jFn) =Sn, et donc(Sn)nest une martingale. b) On a S1=S0(1+"1) =x(1+"1). Or1< <1et"1=1p.s., donc1+"1>0, et comme x >0,S1est positive. Par récurrence, on suppose alorsSn>0. Et commeSn+1=Sn(1+"n+1), par la même preuve que pourS1,Snest positive. c) Comme (Sn)nest une martingale positive, elle converge p.s., car elle est bornée dansL1,i.e. sup nEjSnj<1. d)Zn= logSn= log(Sn1(1 +"n)) = logSn1+ log(1 +"n) =Zn1+ log(1 +"n). e)

P arrécu rrenceimmédiate ,on obtien tdonc

Z n= logx+nX k=1log(1 +"k): f) Comme 1 +"1>0p.s.,log(1 +"1)est bien définie p.s. et intégrable. On a alors

E(log(1 +"1)) =12

log(1 +) +12 log(1) =12 log(12): Par la loi des grands nombres, appliquée aux v.a. i.i.d. intégrableslog(1 +"i), on a 1n n X k=0log(1 +"k)!E(log(1 +"1));p.s. et comme logxn !0, on obtient bien le résultat demandé. 2 g)Comme jj<1, on a0< 2<1et0<12<1, doncZnconverge p.s. vers1etSn converge p.s. vers 0. Exercice 3 :Soient(Xn)n0,(Yn)n0,(Zn)n0des suites de variables aléatoires indépendantes et identiquement distribuées, toutes les trois indépendantes entre elles, et de même loi 12 1+12 1. On posen= (Xn;Yn;Zn), etSn=Pn k=1k, avecS0= (0;0;0)p.s. a)

Mon trerque (Sn)n0est une chaîne de Markov.

b)

Que v autP(Pn

k=1Xk= 0)pournimpair? c)

Mon trerque P(P2n

k=1Xk= 0) =Cn2n(12 )2n. d)

En déduire q ueP(S2n= (0;0;0)) = (Cn2n(12

)2n)3. e) Donner un équiv alentquan dn! 1deP(S2n= (0;0;0)).On rappelle la formule de Stirling : n!+1nnenp2n. f)

Mon trerque (0;0;0)est transitoire.

Solution de l"exercice3.

a) Soients0;:::;sn+12Z3tels queP(S0=s0;:::;Sn=sn)>0. Alors, commeSn+1=Sn+n+1, on a P(Sn+1=sn+1jS0=s0;:::;Sn=sn) =P(Sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1); par indépendance den+1et deS0;:::;Sn. On obtient de même que

P(Sn+1=sn+1jSn=sn) =P(sn+n+1=sn+1);

et donc(Sn)nest une chaîne de Markov. b) CommeXnest à valeurs dansf1;+1gp.s., on ne peut revenir en 0 qu"en un nombre pair de pas, et doncP(Pn k=1Xk= 0) = 0pournimpair. c) Pour queP2n k=1Xk= 0il faut quenvariables soient égales à+1etnvariables soient égales à1. Il y a pour celaCn2npossibilités et comme les v.a.Xnsont i.i.d. on obtientP(P2n k=1Xk= 0) =Cn2n(12 )2n. d) CommefS2n= (0;0;0)g=fP2n k=1Xk= 0;P2n k=1Yk= 0;P2n k=1Zk= 0g, par indépendance desXi, Y i,Zion obtient

P(S2n= (0;0;0)) =P

2nX k=1X k= 0 P 2nX k=1Y k= 0 P 2nX k=1Z k= 0 ce qui donne le résultat par la question précédente. e) Par la formule de Stirling, on a quandn! 1, C n2n12 2n (2n)2ne2np4nn

2ne2n2n

12 2n 1pn et en passant à la puissance 3, on obtient

P(S2n= (0;0;0))1(n)3=2:

f) L"espérance du nombre de retour en(0;0;0)N0est

E(N0) =EX

n0? fS2n=0g =X n0P(S2n= (0;0;0)) et commeP(S2n= (0;0;0))1(n)3=2qui est sommable, on aE(N0)<1. Le nombre de retour en (0;0;0)est donc fini p.s., c"est-à-dire que(0;0;0)est transitoire. 3quotesdbs_dbs5.pdfusesText_9