[PDF] Fiche technique sur les limites - lyceedadultesfr



Previous PDF Next PDF







Fonctions usuelles – Limites

On peut aussi utiliser les croissances comparées des fonctions usuelles En plus l’infini, c’est l’exponentielle qui domine les fonctions puissances qui elle-même dominent les fonctions logarithmes lim 0 lim 0 ln( ) x x n n x e n x x n x →+∞ →+∞ =+∞ ∀ > =+∞ ∀ >



Fiche technique sur les limites - lyceedadultesfr

Fiche technique sur les limites 1 Fonctions élémentaires Les résultats suivants font référence dans de très nombreuses situations 1 1 Limite en +1et 1 f(x) xn 1 xn p x 1 p x ln(x) ex lim x+1 f(x) +1 0 +1 0 +1 1 lim x1 f(x) n pair +1 n impair 1 0 non défini non défini non défini 0 1 2 Limite en 0 f(x) 1 xn p x ln(x) lim x0 x>0 f(x



Limites de fonctions usuelles - Free

Opérations sur les limites Dans les tableaux qui suivent, les limites des fonctions f et g sont prises soit en -∞, soit en + ∞, soit en un réel a l et l' sont des nombres réels Lorsqu'il n'y a pas de conclusion en général, on dit alors qu'il y a un cas de forme indéterminée Limite d'une somme



Lycée Blaise Pascal TSI 1 année - Free

Limites usuelles lnx x Soient α, β et γ des réels strictement positifs



Développements limités usuels en 0 - H&K

Primitives usuelles 5 III Puissances et inverses de fonctions usuelles Fonction Primitive Intervalles sin2 x x 2 − sin2x 4 R cos2 x x 2 + sin2x 4 R tan2 x tanx −x i − π 2 +kπ; π 2 +kπ h cotan2 x −cotan x −x ]kπ;(k +1)π[sh2 x sh 2x 4 − x 2 R ch2 x sh 2x 4 + x 2 R th2 x x −th x R coth2 x x −coth x ]−∞;0[ , ]0;+∞[1 sinx



Développements limités usuels - unicefr

Développements limités usuels Les développements limités ci-dessous sont valables quand x tend vers 0 et uniquement dans ce cas Formule de Taylor-Young en 0 f(x) =



MPSI 12 septembre 2008 - blognuxfreefr

I, est l’ensemble des points interieurs a I 2 2 Limite a droite, limite a gauche 2 2 1 Limite a droite D e nition 10 Soit f, fonction d e nie sur un intervalle I, sauf peut etre en a, avec a interieur a I La limite a droite de f en a est, si elle existe, la limite en a de la restriction de f a I\]a;+1[ On la note : lim a+ f 5



FONCTION LOGARITHME NEPERIEN - Maths & tiques

On la note lna La fonction logarithme népérien, notée ln, est la fonction : ln: 0;] +∞ →[ℝ xlnx Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y=x



Fonctions usuelles - martellinetlifyapp

f(x) = ln (ex ´1 x) 1 Déterminer le domaine définition def 2 Montrer que f est dérivable sur son domaine de définition, puis montrer quef1 est du signe de h: x ÞÝÑx´1+e´x sur R‹ 3 Etudier la fonction h ainsi définie et déterminer son signe 4 Dresser le tableau des variations de f, déterminer ses limites, puis tracer

[PDF] la pyramide du louvre est une pyramide régulière à base carrée

[PDF] géométrie collège

[PDF] mélange des couleurs en peinture pdf

[PDF] tableau de conversion longueur ce2

[PDF] modèle de fiche d'évaluation des fournisseurs

[PDF] critères de sélection d'un fournisseur

[PDF] procedure selection fournisseur

[PDF] on considère la pyramide sabcd de sommet s

[PDF] regle puissance exponentielle

[PDF] rubriques nomenclature loi sur l'eau

[PDF] nomenclature eau

[PDF] indice de pollution par ville

[PDF] fonction puissance cours

[PDF] nomenclature loi sur l'eau 2017

[PDF] logarithme puissance

Fiche technique sur les limites

1Fonctionsélémentaires

Les résultats suivants font référence dans de très nombreuses situations.

1.1Limiteen+1et1

f(x)x n1 x npx1pxln(x)e xlim x!+1f(x)+10+10+1+1lim x!1f(x)npair+1 nimpair10non défininon défininon défini0

1.2Limiteen0

f(x)1 x n1pxln(x)lim x!0x>0f(x)+1+11 lim x!0x<0f(x)npair+1 nimpair1non défininon défini2Asymptotesparallèlesauxaxes Résultat surfInterprétation géométrique sur la courbeCflim x!1f(x)=lLa droitey=lest asymptote horizontale àCflim

x!af(x)=1La droitex=aest asymptote verticale àCf3Opérationsurleslimitesetformesindéterminées

3.1Sommedefonctions

Sifa pour limitelll+11+1Siga pour limitel

0+11+111

alorsf+ga pour limitel+l0+11+11F. Ind.

Paul Milan 1 sur

3

Terminale ES

3.2Produitdefonctions

3.2Produitdefonctions

Sifa pour limitell,001

Siga pour limitel

0111
alorsfga pour limitell01*F. ind.1**Appliquer la règle des signes

3.3Quotientdefonctions

Sifa pour limitell,00l11

Siga pour limitel

0,0001l1

alors fg a pour limitel l

01*F. ind.01*F. ind.

*Appliquer la règle des signes

4Polynômesetlesfonctionsrationnelles

4.1Fonctionpolynôme

Théorème 1Un polynôme a même limite en+1et1que son monôme du plus haut degré.

Si P(x)=anxn+an1xn1++a1x+a0x0alors

lim Théorème 2Une fonction rationnelle a même limite en+1et1que son monôme du plus degré de son numérateur sur celui de son dénominateur.

Si f(x)=anxn+an1xn1++a1x+a0x0b

mxm+bm1xm1++b1x+b0x0alors lim x!+1f(x)=limx!+1a nxnb mxmetlimx!1f(x)=limx!1a nxnb mxmPaul Milan 2 sur3 Terminale ES

4.3Asymptoteoblique

4.3Asymptoteoblique

Théorème 3Dans une fonction rationnelle lorsque le degré du polynôme du numé- rateur est égale à celui de son dénominateur plus un, alors la représentation de cette fonctionCfadmet une asymptote oblique(D)en+1et1.

Soit f(x)=P(x)Q(x)et dP=dQ+1

Soit la droite(D)d"équation y=ax+b alorslimx!1[(f(x)(ax+b)]=05Fonctionslogarithmeetexponentielle

5.1Fonctionlogarithme

Comparaison de la fonction logarithme avec la fonction puissance en+1et en0.

En+1limx!+1ln(x)x

=0;limx!+1ln(x)x n=0

En0 limx!0x>0xln(x)=0;limx!0x>0x

nln(x)=0

5.2Fonctionexponentielle

Comparaison de la fonction exponentielle avec la fonction puissance en+1et en1.

En+1limx!+1e

xx = +1;limx!+1e xx n= +1 En 1limx!1xex=0;limx!1xnex=0Paul Milan 3 sur3 Terminale ESquotesdbs_dbs22.pdfusesText_28