[PDF] FONCTION LOGARITHME NEPERIEN - Maths & tiques



Previous PDF Next PDF







Fonctions usuelles – Limites

On peut aussi utiliser les croissances comparées des fonctions usuelles En plus l’infini, c’est l’exponentielle qui domine les fonctions puissances qui elle-même dominent les fonctions logarithmes lim 0 lim 0 ln( ) x x n n x e n x x n x →+∞ →+∞ =+∞ ∀ > =+∞ ∀ >



Fiche technique sur les limites - lyceedadultesfr

Fiche technique sur les limites 1 Fonctions élémentaires Les résultats suivants font référence dans de très nombreuses situations 1 1 Limite en +1et 1 f(x) xn 1 xn p x 1 p x ln(x) ex lim x+1 f(x) +1 0 +1 0 +1 1 lim x1 f(x) n pair +1 n impair 1 0 non défini non défini non défini 0 1 2 Limite en 0 f(x) 1 xn p x ln(x) lim x0 x>0 f(x



Limites de fonctions usuelles - Free

Opérations sur les limites Dans les tableaux qui suivent, les limites des fonctions f et g sont prises soit en -∞, soit en + ∞, soit en un réel a l et l' sont des nombres réels Lorsqu'il n'y a pas de conclusion en général, on dit alors qu'il y a un cas de forme indéterminée Limite d'une somme



Lycée Blaise Pascal TSI 1 année - Free

Limites usuelles lnx x Soient α, β et γ des réels strictement positifs



Développements limités usuels en 0 - H&K

Primitives usuelles 5 III Puissances et inverses de fonctions usuelles Fonction Primitive Intervalles sin2 x x 2 − sin2x 4 R cos2 x x 2 + sin2x 4 R tan2 x tanx −x i − π 2 +kπ; π 2 +kπ h cotan2 x −cotan x −x ]kπ;(k +1)π[sh2 x sh 2x 4 − x 2 R ch2 x sh 2x 4 + x 2 R th2 x x −th x R coth2 x x −coth x ]−∞;0[ , ]0;+∞[1 sinx



Développements limités usuels - unicefr

Développements limités usuels Les développements limités ci-dessous sont valables quand x tend vers 0 et uniquement dans ce cas Formule de Taylor-Young en 0 f(x) =



MPSI 12 septembre 2008 - blognuxfreefr

I, est l’ensemble des points interieurs a I 2 2 Limite a droite, limite a gauche 2 2 1 Limite a droite D e nition 10 Soit f, fonction d e nie sur un intervalle I, sauf peut etre en a, avec a interieur a I La limite a droite de f en a est, si elle existe, la limite en a de la restriction de f a I\]a;+1[ On la note : lim a+ f 5



FONCTION LOGARITHME NEPERIEN - Maths & tiques

On la note lna La fonction logarithme népérien, notée ln, est la fonction : ln: 0;] +∞ →[ℝ xlnx Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y=x



Fonctions usuelles - martellinetlifyapp

f(x) = ln (ex ´1 x) 1 Déterminer le domaine définition def 2 Montrer que f est dérivable sur son domaine de définition, puis montrer quef1 est du signe de h: x ÞÝÑx´1+e´x sur R‹ 3 Etudier la fonction h ainsi définie et déterminer son signe 4 Dresser le tableau des variations de f, déterminer ses limites, puis tracer

[PDF] la pyramide du louvre est une pyramide régulière à base carrée

[PDF] géométrie collège

[PDF] mélange des couleurs en peinture pdf

[PDF] tableau de conversion longueur ce2

[PDF] modèle de fiche d'évaluation des fournisseurs

[PDF] critères de sélection d'un fournisseur

[PDF] procedure selection fournisseur

[PDF] on considère la pyramide sabcd de sommet s

[PDF] regle puissance exponentielle

[PDF] rubriques nomenclature loi sur l'eau

[PDF] nomenclature eau

[PDF] indice de pollution par ville

[PDF] fonction puissance cours

[PDF] nomenclature loi sur l'eau 2017

[PDF] logarithme puissance

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-a 1 a

. Exemple : Vidéo https://youtu.be/yiQ4Z5FdFQ8 Dériver la fonction suivante sur l'intervalle

0;+∞

2 ln x fx x 2 2 2 22
1

2lnln1

2lnln 2ln ln xxx x fx x xx x x xx

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0 . Corollaires : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxMéthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/GDt785E8TPE Vidéo https://youtu.be/_fpPphstjYw a) Résoudre dans ℝ l'équation suivante : ()()ln3ln 90 xx-+-=

b) Résoudre dans ℝ l'inéquation suivante : ln3-x -lnx+1 a) Ensemble de définition : x-3>0 x>3 et 9-x>0 x<9

L'équation est définie sur ]3 ; 9[. On restreint donc la recherche des solutions à cet intervalle. ()()ln3ln 90 xx-+-=

2 2 ln39 0 ln39 ln1 391
12271
12280

123212 32

622622

22
xx xx xx xx xx xetx

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLes solutions sont donc

6-22 et 6+22 car elles appartiennent bien à l'ensemble de définition. b) Ensemble de définition : 3-x>0 x<3 et x+1>0 x>-1

L'inéquation est définie sur ]-1 ; 3[. On restreint donc la recherche des solutions à cet intervalle.

ln3-x -lnx+1 ⇔ln3-x

L'ensemble solution est donc

1;3 . 3) Limites aux bornes Propriété : lim x→+∞ lnx=+∞ et lim x→0 x>0 lnx=-∞

Démonstration : - Soit un intervalle

a;+∞

quelconque. Démontrons que cet intervalle contient toutes les valeurs de ln dès que x est suffisamment grand.

lnx>a

à condition que

x>e a 0 0 1 limlnlimlnlim ln xXX x xX X

. 4) Courbe représentative On dresse le tableau de variations de la fonction logarithme népérien : x 0 +∞

ln'(x) lnx

7YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frIV. Limites et croissances comparées Propriétés (croissances comparées) : a)

lim x→+∞ lnx x =0 et pour tout entier non nul n, lim x→+∞ lnx x nquotesdbs_dbs19.pdfusesText_25