[PDF] Rappels sur les suites - Algorithme



Previous PDF Next PDF







Rappels sur les suites - Algorithme

1 SUITE : GÉNÉRALITÉS 1 5 Visualisation d’une suite Pour visualiser une suite définie par récurrence un+1 = f(un), il suffit de tracer la courbe de la fonction associée f et la droite y =x



Exo7 - Cours de mathématiques - Cours et exercices de

nous verrons l’écriture des entiers en base 10 et en base 2 Nous utiliserons aussi la notion de listes et le module math 2 1 Division euclidienne et reste, calcul avec les modulo La division euclidienne de a par b, avec a 2Z et b 2Z s’écrit : a = bq + r



350re S - Etude de suites - ChingAtome

On considère l’algorithme suivant: Pour i allant de 0 à 5 a i (i 1) Fin Pour 1 Lors de l’exécution pas à pas de cet algorithme, donner les valeurs prises par la variable a 2 Donner l’expression d’une suite (un) dont les six pre-miers termes sont les valeurs ffihées par l’algorithme Exercice 5089



Suites numériques : Généralités - Parfenoff org

On note : : ; ou : ∈ m la suite ainsi définie et l’image de l’entier appelé aussi terme de rang de la suite • Si les valeurs de l’entier sont tous les nombres plus grands qu’un entier donné Ù, la suite elle-même est notée : ; Ù dans ce cas : Ù est le premier terme de la suite Si Ù L



Suites numériques

(un) est une suite arithmétique de raison r, de premier terme u1 et de n-ième termeun On note Sn = u1 +u2 +···+un Les question sont indépendantes les unes des autres 1) Calculer u1 et S17 lorsque : u17 = 105 et r = 2 2) Calculer u1 et u33 lorsque : r = −7 et S33 = 0 3) Calculer n et u1 lorsque : un = 14 , r = 7 et Sn = −1176



350re ES - Suite et introduction - ChingAtome

3 Termes d’une suite et algorithme : Exercice 7539 On considère les deux algorithmes ci-dessous: Algorithme 1 u 4 Pour i allant de 1 à 53 u u+3 Fin Pour Algorithme 2 u 1 Pour i allant de 1 à 4 u 2 u+1 Fin Pour Pour chacun des algorithmes, donner la valeur contenue dans la variable u après l’exécution de l’algorithme Exercice 7540 1 a



COURS ALGORITHMIQUE ET PROGRAMMATION INFORMATIQUE

• Cours et exercices corrigés d’algorithmique- J Julliand Ed Vuibert Fev 2010 • Algorthmique méthodes et modèles , P Lignelet Ed Masson 1988 • Cours algorithme Cécile Balkanski, Nelly Bensimon, Gérard Ligozat IUT Orsay MAP - UNS 2



Suites arithmétiques et géométriques - Corrigé

4) est une suite arithmétique de raison 3, et Calculer est une suite géométrique de raison 3 et Calculer d’où Exercice 3 Soit et les suites définies sur par et a) Démontrer que la suite de terme général est une suite géométrique



Classe de première S

et si les observations graphiques et numériques pourtant cohérentes donnent une vision exacte du phénomène Une première abstraction consiste à associer à ce problème de construction de carrés la suite infinie (k n) des mesures des côtés et à étudier les points suivants : • Monotonie de la suite (k n)

[PDF] Algorithme et valeur de x 2nde Mathématiques

[PDF] Algorithme et vecteurs 2nde Mathématiques

[PDF] algorithme euclide 3eme 3ème Mathématiques

[PDF] algorithme exemple PDF Cours,Exercices ,Examens

[PDF] algorithme exercice DM 2nde Mathématiques

[PDF] algorithme exercice et solution PDF Cours,Exercices ,Examens

[PDF] ALgorithme exercice long 2nde Mathématiques

[PDF] Algorithme exercice seconde 2nde Mathématiques

[PDF] algorithme exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algorithme exo long 2nde Mathématiques

[PDF] algorithme fibonacci PDF Cours,Exercices ,Examens

[PDF] Algorithme fonction minimum 2nde Mathématiques

[PDF] algorithme fonction procedure exercice corrigé PDF Cours,Exercices ,Examens

[PDF] algorithme fonction procedure exercice corrigé pdf PDF Cours,Exercices ,Examens

[PDF] algorithme fonction puissance recursive PDF Cours,Exercices ,Examens

DERNIÈRE IMPRESSION LE14 septembre 2015 à 12:36

Rappels sur les suites - Algorithme

Table des matières

1 Suite : généralités2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Exemples de suites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Variation ou monotonie d"une suite. . . . . . . . . . . . . . . . . . . 3

1.4 Comment montrer la monotonie d"une suite. . . . . . . . . . . . . 4

1.5 Visualisation d"une suite. . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Suite arithmétique (rappels)6

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Comment la reconnaît-on?. . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Expression du terme général en fonction den. . . . . . . . . . . . . 6

2.4 Somme des premiers termes. . . . . . . . . . . . . . . . . . . . . . . 6

3 Suite géométrique (rappels)7

3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Comment la reconnaît-on?. . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Expression du terme général en fonction den. . . . . . . . . . . . . 8

3.4 Somme des premiers termes. . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Limite d"une suite géométrique. . . . . . . . . . . . . . . . . . . . . 8

4 Algorithme9

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Conventions pour écrire un algorithme. . . . . . . . . . . . . . . . 9

4.3 Les variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.2 Déclaration des variables. . . . . . . . . . . . . . . . . . . . 10

4.4 Affectation d"une variable numérique. . . . . . . . . . . . . . . . . 10

4.5 Lecture et écriture d"une variable. . . . . . . . . . . . . . . . . . . . 11

4.6 Les tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.7 Les boucles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.7.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.7.2 La boucle conditionnelle. . . . . . . . . . . . . . . . . . . . . 12

4.7.3 Boucler en comptant. . . . . . . . . . . . . . . . . . . . . . . 13

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Suite : généralités

1.1 Définition

Définition 1 :Une suite(un)est une fonction définie deN(ou éventuellement N-[[0,k]]) dansR. À un rang donnén, on associe un nombre réel notéun. (un):NouN-[[0,k]]-→R n?-→un

Remarque :

•N-[[0,k]]est l"ensembleNprivé des premiers naturels jusqu"àk •unest appelé le terme général de la suite(un). •Bien faire la différence entre la suite noté(un)et le terme général notéun •Si une suite est définie à partir du rangp, on la note(un)n?p

Exemples :

•(un): 2; 5; 8; 11; 14; 17; ... suite arithmétique •(vn): 3; 6; 12; 24; 48; 96; ... suite géométrique

1.2 Exemples de suites

a) On peut définir une suite defaçon explicite:un=f(n) u n=1 nn?N?,vn=⎷n-3n?3 b) On peut aussi définir une suite defaçon récurrenteà un ou plusieurs termes :

•À un terme :un+1=f(un)?u

0=4 u n+1=0,75un+2 (un): 4; 5; 5,75; 6,3125; ...

Pour calculerun,nétant donné

Variables:N,Ientiers

Uréel

Entrées et initialisation

LireN

4→U on rentre u0

Traitement

pourIvariant de 1 àNfaire

0,75U+2→U relation

fin

Sorties: AfficherU

N5102030

U7,050 87,774 77,987 37,999 9

La suite semble croissante et converger

vers 8

•Àdeuxtermes:un+2=f(un+1,un)?u

0=1,u1=1

u n+2=un+1+un (un): 1; 1; 2; 3; 5; 8; 13; ...

Pour calculerun,nétant donné

Variables:N,Ientiers

U,V,Wréels

Entrées et initialisation

LireN

1→V on rentre u0

1→U on rentre u1

Traitement

pourIvariant de 2 àNfaire

U+V→W relation

V→U

W→V?

on passe au rang supérieur fin

Sorties: AfficherV

N10152030

V8998710 9461 346 269

PAULMILAN2 TERMINALES

1. SUITE : GÉNÉRALITÉS

c) On peut encore définir une suite par l"intermédiaire d"une autre suiteou par une somme de termes, etc... (un)étant définie, on définit la suite(vn)par :vn=un-4 w n=n∑ i=11 i=1+12+13+···+1n Si on veut déterminer une valeur approchée d"un terme particulier de(wn), on peut écrire le programme suivant :

Par exemple, on trouve les valeurs

suivantes pourw5,w10,w50.

Si l"on veut trouver le résultat exact en

fraction avec la TI 82, écrire : "Disp W?Frac"

On trouve les valeurs suivantes :

•w5=13760?2,283

•w10?2,923,w50?4,499

Variables:N,Ientiers

Wréel

Entrées et initialisation

LireN

0→W

Traitement

pourIvariant de 1 àNfaire

W+1I→W

fin

Sorties: AfficherW

d) On peut aussi définir une suite par une assertion explicite sans pour autant être capable de préciser la valeur d"un terme quelconque. Par exemple la suite(dn)qui au rangn?1 associednlanième décimale du nombreπ=3,141 592... :d1=1,d2=4,d3=1,d4=5,d5=9,d6=2 ...

1.3 Variation ou monotonie d"une suite

Définition 2 :Soit(un)une suite numérique. On dit que : •la suite(un)est strictementcroissante(à partir d"un certain rangk) lorsque u n+1>unpour tout entiern?k •la suite(un)est strictementdécroissante(à partir d"un certain rangk) lorsque u n+1Remarque : Il existe des suites qui ne sont ni croissantes ni décroissantes :un= (-1)n Les premiers termes de la suite n"entrent pas nécessairement en compte dans la variation d"une suite. Ils peuvent cependant donner une indication pour la monotonie de la suite

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

1.4 Comment montrer la monotonie d"une suite

Règle 1 :Pour montrer la monotonie d"une suite, •on étudie le signe de la quantitéun+1-un si la quantité est positive (resp négative) à partir d"un certain rangk, la suite est croissante (resp décroissante) pourn?k •si tous les termes de la suite sont strictement positifs à partir d"un certain rang k, on compare la quantitéun+1 unà 1

si la quantité est supérieure à 1 (resp inférieure à 1) à partir d"un certain rangk,

la suite est croissante (resp décroissante) pourn?k •si la suite est définie de façon explicite, on étudie les variations de la fonctionf surR+ •(voir chapitre suivant) on utilise un raisonnement par récurrence

Exemples :

•Montrer que la suite(un)définie pour toutnpar :un=n2-nest croissante.

Étudions le signe de la quantité :un+1-un

u n+1-un= (n+1)2-(n+1)-(n2-n) =n2+2n+1-n-1-n2+n =2n Or pour toutn?N, on a 2n?0, doncun+1-un?0. La suite(un)est croissante à partir du rang 0. •Montrer que la suite(un)définie pour toutn?N?par :un=2nnest croissante.

Comme pour toutn?N?un>0, comparons le rapportun+1

unà 1 : u n+1 un=2 n+1 n+1 2n n= 2n+1 n+1×n2n=2nn+1 Orn?1, en ajoutantnde chaque côté de l"inégalité, 2n?n+1, donc : 2n n+1?1

Comme?n?1un+1

un?1, la suite(un)est croissante à partir du rang 1. •Montrer que la suite(un)définie pour toutn?2 par :un=2n+1n-1est décrois- sante. On étudie la fonction associéefdéfinie surI= [2;+∞[parf(x) =2x+1 x-1.

Cette fonction est dérivable surI, donc

f ?(x) =2(x-1)-(2x+1) (x-1)2=-3(x-1)2doncf?(x)<0x?I La fonctionfest donc décroissante surI, donc la suite(un)est décroissante

PAULMILAN4 TERMINALES

1. SUITE : GÉNÉRALITÉS

1.5 Visualisation d"une suite

Pour visualiser une suite définie par récurrenceun+1=f(un), il suffit de tracerquotesdbs_dbs5.pdfusesText_10