[PDF] Vecteurs et colinéarité Angles orientés et trigonométrie



Previous PDF Next PDF







Angles orientés Trigonométrie - BAC DE FRANCAIS

Angles orientés - trigonométrie II Angles orientés 1 Angle orienté de deux vecteurs unitaires Soient u et v deux vecteurs unitaires Le couple (u v,) de ces 2 vecteurs définit un angle orienté On a u =1 et v =1 A ce couple de vecteurs, nous pouvons associer un arc orienté AB 2 Angle orienté de deux vecteurs non nuls Soient u1 et v1



ANGLES ORIENTÉS - TRIGONOMETRIE

Chapitre 04 Angles orientés - Trigonométrie Première S de même pour les deux derniers cas (à traiter en exercice) Remarque Pour tous vecteurs ~u et ~v non nuls et pour tous réels a et b strictement positifs, on a : (a~u,b~v) = (~u,~v) +k ×2π, k ∈ Z Exemple Somme des angles orientés d’un triangle Soit un triangle ABC, alors



I- Angles orientés - Maths Stan

Exemple : Calculer la mesure principale de l’angle dont une mesure est donnée par 4 23 π Solution : On sait que les autres mesures de cet angles sont de la forme π π 2k 4 23 + , avec k∈ℤ On a donc parmi toutes les valeurs possibles de k, une qui vérifie, l’inéquation : 4 23 2 4 23 2 4 23 π ππ π ππ π π −π< +k



Angles orientés, cours, première S

Angles orientés, ours,c classe de première S 3 Propriétés des mesures d'angles orientés Propriété,relation de Chasles : Pour tous les vecteurs non nuls ~u, ~vet w~,



Vecteurs et colinéarité Angles orientés et trigonométrie

3 ANGLES ORIENTÉS 2 3 Équation réduite d’une droite Théorème 3 : Toute droite d non parallèle à l’axe des ordonnées admet une équation de la forme y = mx +p appelée équation réduite de d Le vecteur ~u(1 ;m)est un vecteur directeur de d 3 Angles orientés 3 1 Le radian Définition 4 : Le radian est une unité de mesure d’un



Première S - Angles orientés de deux vecteurs

Angles orientés de deux vecteurs I) Définition : Propriétés des angles orientés 1) Propriétés , & et , & sont deux vecteurs non nuls



Angles orientés et trigonométrie

La valeur absolue de cette mesure principale donne la longueur de l’arc géométrique Ainsi que la mesure de l’angle géométrique Si la mesure principale de ( ; ) est alors et = Exercice Donner les mesures principales des angles suivants : 4 Propriétés des angles orientés de vecteurs a



Angles et trigonométrie - Free

se trouve dans l'intervalle ]– , ], il s'agit de la mesure principale de l'angle 4 Propriétés des angles orientés Angles et vecteurs colinéaires Deux vecteurs non nuls u et v sont colinéaires si et seulement si la mesure principale de l'angle orienté u,v est égale à 0 ou à

[PDF] angles orientés et parallélisme 2nde Mathématiques

[PDF] Angles orientés et suites 1ère Mathématiques

[PDF] Angles orientés et vecteur 1ère Mathématiques

[PDF] angles orientés et vecteurs 1ère Mathématiques

[PDF] angles orientés exercices corrigés PDF Cours,Exercices ,Examens

[PDF] angles orientés exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] angles orientés trigonométrie exercices corrigés PDF Cours,Exercices ,Examens

[PDF] Angles Particuliers 3ème Mathématiques

[PDF] angles propriétés PDF Cours,Exercices ,Examens

[PDF] Angles rentrants 6ème Mathématiques

[PDF] Angleterre 6ème Anglais

[PDF] animal embleme de la russie PDF Cours,Exercices ,Examens

[PDF] animal embleme italie PDF Cours,Exercices ,Examens

[PDF] animal farm george orwell PDF Cours,Exercices ,Examens

[PDF] animal farm pdf PDF Cours,Exercices ,Examens

DERNIÈRE IMPRESSION LE21 février 2017 à 10:56

Vecteurs et colinéarité.

Angles orientés et trigonométrie

Table des matières

1 Rappels sur les vecteurs2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Opérations sur les vecteurs. . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Colinéarité de deux vecteurs. . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Géométrie analytique. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Équation cartésienne d"une droite5

2.1 Vecteur directeur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Équation cartésienne d"une droite. . . . . . . . . . . . . . . . . . . . 6

2.3 Équation réduite d"une droite. . . . . . . . . . . . . . . . . . . . . . 7

3 Angles orientés7

3.1 Le radian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Mesure d"un angle orienté. . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Trigonométrie9

4.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Tableau des angles remarquables. . . . . . . . . . . . . . . . . . . . 9

4.3 Relations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Équations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Lignes trigonométrie dans le cercle. . . . . . . . . . . . . . . . . . . 12

PAUL MILAN1PREMIÈRE S

TABLE DES MATIÈRES

1 Rappels sur les vecteurs

1.1 Définition

Définition 1 :Un vecteur?uou-→AB est défini par :

•une direction (la droite (AB)).

•un sens (de A vers B)

•Une longueur : la norme du vecteur

?u?ou AB Égalité de deux vecteurs-→AB=--→CD si et seulement si ABDC est un parallélogramme. ?A? B C? D

1.2 Opérations sur les vecteurs

1.2.1 Somme de deux vecteurs

La somme de deux vecteurs est définie par la relation de chasles : --→AC=-→AB+-→BC

Cette relation permet de décomposer

un vecteur.

On a l"inégalité triangulaire :

?u+?v????u?+??v? ?u? v u+?v A? B C

Construction de la somme de deux vec-

teurs de même origine.

On effectue un parallélogramme, afin

de reporter le deuxième vecteur per- mettant d"appliquer la relation de

Chasles.

--→OA+-→OB ?O? A B? C

Propriété 1 :La somme de deux vecteurs :

•Est commutative :?u+?v=?v+?u

•Est associative :(?u+?v) +?w=?u+ (?v+?w) =?u+?v+?w •Possède un élélment neutre?0 :?u+?0=?u •tout vecteur possède un opposé-?u:--→AB=-→BA

PAUL MILAN2PREMIÈRE S

1. RAPPELS SUR LES VECTEURS

1.2.2 Multiplication d"un vecteur par un scalaire

Lorsqu"on multiplie un vecteur par un

réelk, appelé scalaire, le vecteur ainsi formék?uest tel que :

•Sa longueur est multiplié par|k|

•Sik>0 son sens est inchangé

•Sik<0 son sens est inversé.

•Sik=0 on a : 0?u=?0

3

2-→AB

-2-→ABB A Propriété 2 :Bilinéarité. La multiplication par un scalaire est distributive par rapport à l"addition de deux vecteurs ou la somme de deux réels.

•k(?u+?v) =k?u+k?v•(k+k?)?u=k?u+k??v

1.3 Colinéarité de deux vecteurs

Définition 2 :On dit que deux vecteurs?uet?vsont colinéaires, si et seulement si, il existe un réelktel que :?v=k?u Remarque :Le vecteur nul?0 est colinéaire à tout vecteur car :?0=0?u Propriété 3 :La colinéarité permet de montrer le parallélisme et l"alignement. -→AB et--→CD colinéaires?(AB)//(CD) -→AB et--→AC colinéaires?A, B, C alignés

Exemple :Voir figure ci-contre :

Soit ABC un triangle, E, I et F tels que :

AE=1

3-→BC ,-→CI=23-→CB et

AF=1

3--→AC .

Démontrer que I, E et F sont alignés

A B CE I F Exprimons-→EI et-→EF en fonction de-→AB .

•-→CI=2

3-→CB donc-→BI=13-→BC .

On en déduit que

-→AE=-→BI donc que AEIB est un parallélogramme. On a alors :-→EI=-→AB

PAUL MILAN3PREMIÈRE S

TABLE DES MATIÈRES

•De plus :-→EF=-→EA+-→AF=13-→CB+13--→AC=13(--→AC+-→CB) =13-→AB

On en déduit alors :

-→EF=1

3-→EI . Les vecteurs-→EF et-→EF sont colinéaires et donc

les points E, F et I sont alignés.

1.4 Géométrie analytique

Propriété 4 :Mis à part les calculs de distance qui exige un repère orthonormé, les formules suivantes sont valable dans tout repère. •Soit deux points A(xA;yA)et B(xB;yB), les coordonnées du vecteur-→AB vérifient :-→AB=?xB-xA;yB-yA? •Soit deux points A(xA;yA)et B(xB;yB), les coordonnées du milieu I du seg- ment [AB] vérifient :

I=?xB+xA

2;yB+yA2?

•On appelle déterminant de deux vecteurs?u(x;y)et?v(x?;y?), le nombre : det(?u,?v) =????x x? y y =xy?-x?y •Deux vecteurs sont colinéaires si et seulement si, leur déterminant est égale à 0 uet?vcolinéaires?det(?u,?v) =0 •Dans un repère orthonormal, la norme d"un vecteur?uet la distance entre les points A(xA;yA)et B(xB;yB)vérifient : ?u||=? x2+y2et AB=?(xB-xA)2+ (yB-yA)2 Exemples :Dans un repère orthonormé(O,?ı,??)

1) Soit A(1; 4) et B(-5; 2). Calculer les coordonnées de-→AB de I =m[AB] et la

longueur AB -→AB= (-5-1 ; 2-4) = (-6 ;-2)et I =?1-5

2;4+22?

= (-2 ; 3) AB = (-6)2+ (-2)2=⎷40=2⎷10

2) On donne

?u(2 ; 3)et?v(3 ; 4). Les vecteurs?uet?vsont-ils colinéaires? det(?u;?v) =????2 33 4???? =8-9=-1. Comme det(?u;?v)?=0 les vecteurs ne sont pas colinéaires.

Dans un repère quelconque

ABCD est un parallélogramme. M, N, Q sont tels que : --→DM=4

5--→DA ,--→AN=34-→AB ,--→CQ=23--→CD

PAUL MILAN4PREMIÈRE S

2. ÉQUATION CARTÉSIENNE D"UNE DROITE

La parallèle à (MQ) menée par N coupe BC en P. Déterminer le coefficientkde colinéarité tel que-→BP=k--→AD .

Faisons une figure, en prenant comme

repère(A;-→AB ,--→AD): D"après l"énoncé les coordonnées de M,

N et Q sont :

M 0;1 5? , N?34;0? , Q?13;1?

P est sur (BC), son abscisse est 1.

A B CD ?M N? Q

P? ? ?

De plus commekest tel que :-→BP=k--→AD , son ordonnée vautk.

Les coordonnées de P sont : P(1;k)

Comme (NP)//(MQ), le déterminant de

--→MQ et--→NP est nul, on a :

3-0 1-34

1-1

5k-0???????

314
4 =0 k

3-15=0?k3=15?k=35

2 Équation cartésienne d"une droite

2.1 Vecteur directeur

Définition 3 :Soit une droiteddéfinie par deux points A et B. Un vecteur directeur ?ude la droitedest le vecteur-→AB . Remarque :Le vecteur?un"est pas unique, car 2 points quelconques de la droite définissent un vecteur directeur. Si ?uet?vsont deux vecteurs directeurs de la droited, alors les vecteurs?uet?vsont colinéaires. On a donc det(?u,?v) =0. Exemple :Soit la droite (AB) définie par : A(3 ;-5)et B(2 ; 3)

Le vecteur

-→u=-→AB est un vecteur directeur de la droite (AB), on alors : u=(2-3 ; 3-(-5))= (-1 ; 8) Théorème 1 :Une droite est entièrement définie si l"on connaît un point A et une vecteur directeur ?u. Démonstration :La démonstration est immédiate car à partir du point A et du vecteur directeur ?u, on peut déterminer un autre point B tel que :?u=-→AB

PAUL MILAN5PREMIÈRE S

TABLE DES MATIÈRES

2.2 Équation cartésienne d"une droite

Théorème 2 :Toute droiteddu plan peut être déterminée par une équation de la formeax+by+c=0, avecaetbnon tous les deux nuls. Une telle équation est appeléeéquation cartésiennede la droited. Réciproquement une équation du typeax+by+c=0 définie une droite de vecteur directeur ?u(-b;a) Démonstration :Soit la droitedpassant par le point A(xA;yA)et de vecteur directeur ?u(-b;a). Soit un point quelconque M(x;y)de la droited. On a alors--→AM et?ucolinéaires. Leur déterminant est alors nul. On a :--→AM= (x-xA;y-yA), donc : det(--→AM ,?u) =0?????x-xA-b y-yAa???? =0? a(x-xA) +b(y-yA) =0?ax+by-(axA+byA) =0

On posec=-(axA+byA), on a donc :ax+by+c=0

Réciproquement :Soitl"équationax+by+c=0.Deuxcaspeuventseprésenter •a=0 oub=0, on obtient respectivementy=-cbetx=-caqui sont respectivement une droite horizontale et une droite verticale. •Sia?=0 etb?=0 on peut déterminer deux points de cette équation en pre- nant respectivementx=0 ety=0. On obtient alors les points A? 0 ;-c b? et B? -c a; 0? on obtient alors le vecteur directeur-→AB=? -ca;cb? . Vérifions que ce vecteur -→AB est colinéaire au vecteur?u(-b;a) det(-→AB ;?u) =???????- c a-b c ba??????? =-c+c=0 Exemple :Soit la droiteddéfinie par les point A(2 ; 3)et?u(-2 ; 1). Déterminer une équation cartésienne de la droited.

En posant M(x;y), on a :

det(--→AM ,?u) =0?????x-2-2 y-3 1???? =0?(x-2) +2(y-3) =0 x+2y-2-6=0?x+2y-8=0 ?L"équation cartésienne d"une droite n"est pas unique. On peut toujours multi- plier les coefficients par un facteurknon nul. Par exemple, on peut trouver pour la droite de l"exemple :-2x-4y+16=0 en multipliant par(-2).

PAUL MILAN6PREMIÈRE S

3. ANGLES ORIENTÉS

2.3 Équation réduite d"une droite

Théorème 3 :Toute droitednon parallèle à l"axe des ordonnées admet une équation de la formey=mx+pappelée équation réduite ded. Le vecteur u(1 ;m)est un vecteur directeur ded

3 Angles orientés

3.1 Le radian

Définition 4 :Le radian est une unité de mesure d"un angle comme le degré. Il est défini comme la longueur de l"arc entre 2 points du cercle unité. Le demi cercle unité a un longueur deπet donc correspond à un angle deπ radian. On a alors : 180°=πrd

La mesure en degré de 1 radian vaut

donc :

1 rd=180

π?57°

Remarque :Le radian est une grande

unité qui n"est pas intuitive contraire- ment au degré qui est notre unité pre- mière.1 rd O 11 -1 -1

Tableau des angles remarquables en radian :

Degré30°45°60°90°

Radianπ

6 4 3 2

3.2 Définition

Définition 5 :Un angle orienté est défini par deux vecteurs?uet?v, noté(?u,?v).

L"angle est alors orienté de

?uvers?v.

Sur la figure ci-contre, on a repré-

senté deux angles orientés, représen- tant le même angle(?u,?v). Le premier est orienté dans le sens direct et l"autre dans le sens indirect. ?u? v

PAUL MILAN7PREMIÈRE S

TABLE DES MATIÈRES

3.3 Mesure d"un angle orienté

Pour mesurer un angle orienté, il faut une unité (degré ou radian) et un sens de parcours. Un même angle peut avoir des mesures différentes, comme dans la figure ci-dessus. Ces mesures sont alors équivalentes. Elles sontégales à 2πprès, on dit alors qu"elles sont égales modulo 2π. Définition 6 :On dit que les mesures (en radian)θ1etθ2d"un même angle orienté(?u,?v)sont égales modulo 2π, s"il existe un entier relatifktel que :

2=θ1+k×2πon écrit alorsθ1=θ2[2π]

Exemple :-5π3=π3[2π]en effet,-5π3+2π=-5π+6π3=π3 Définition 7 :On appelle mesure principale d"un angle orienté(?u,?v), la me- sureθavecθ?]-π,π]. On appelle mesure positive d"un angle orienté(?u,?v), la mesureθavecθ?[0,2π[ Exemple :Voici ci-dessous le cercle trigonométrique avec les angles remar- quables exprimés en mesure principale. O?0 ?π6 π4 π3quotesdbs_dbs50.pdfusesText_50