FONCTION LOGARITHME NEPERIEN (Partie 1)









Exponentielle et logarithme

ln(a). Lien exponentielle et logarithme. La fonction exponentielle (de base e) et la fonction logarithme (népérien) sont des fonctions réciproques : leurs 
exponentielle et logarithme


FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

La fonction logarithme népérien notée ln
Texplog


formulaire.pdf

Logarithme et Exponentielle : eln x = ln(ex) = x ln 1 = 0 ln(ab) = ln(a) + ln(b) ln(a/b) = ln(a) − ln(b) ln(1/a) = − ln(a) ln(. √a) = ln(a)/2 ln(aα) = α 
formulaire


Fonction Logarithme népérien 1. De l'exponentielle au logarithme

ln x x. =0. On souligne dans les cadres algébrique et graphique que les fonctions logarithme népérien et exponentielle sont réciproques l'une de l'autre.





FICHE DE RÉVISION DU BAC

FONCTIONS EXPONENTIELLES ET LOGARITHMES exponentielle et logarithme népérien : S ES/L
mathematiques fonctions exponentielles le cours


FONCTION LOGARITHME NEPERIEN (Partie 1)

Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y = x. Conséquences :.
LogTESL


RAPPELS EXP ET FONCTION LN

Rappels sur la fonction exponentielle . La réciprocité des fonctions exponentielle et logarithme népérien ont pour conséquence directe une.
Fonction exp ln


Fonctions exponentielles et logarithmes - L'Etudiant

logarithme étant la réciproque de l'exponentielle ses propriétés découlent La fonction logarithme népérien





Cours sur les fonctions exponentielles et logarithmes - Bacamaths

1.3 Définition. On appelle fonction logarithme népérien la bijection réciproque de la fonction exponentielle. On la note ln. La fonction ln est donc définie sur 
expln


FONCTION LOGARITHME NEPERIEN

La fonction exponentielle est continue et strictement croissante sur ℝ à valeurs dans. 0;+∞⎤⎦⎡⎣ . D'après le théorème des valeurs intermédiaires
LogTS


218697 FONCTION LOGARITHME NEPERIEN (Partie 1)

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 1) En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un travail de 20 ans, Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition (voir paragraphe II). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur

, à valeurs dans

0;+∞

. Pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans

. Définition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ln:0;+∞ x"lnx

Exemple : L'équation

e x =5 admet une unique solution. Il s'agit de x=ln5 . A l'aide de la calculatrice, on peut obtenir une valeur approchée : x≈1,61

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 Remarque : Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation

y=x . Conséquences : a) x=e a est équivalent à a=lnx avec x > 0 b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

Exemples :

e ln2 =2 et lne 4 =4 Propriété : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxDémonstration : a) x=y⇔e lnx =e lny ⇔lnx=lny b) xYvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Méthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/_fpPphstjYw Résoudre dans I les équations et inéquations suivantes : a)

lnx=2 , I=0;+∞ b) e x+1 =5 I=! c)

3lnx-4=8

, I=0;+∞ d) ln6x-1 ≥2 , I= 1 6 e) e

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 1) En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un travail de 20 ans, Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition (voir paragraphe II). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur

, à valeurs dans

0;+∞

. Pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans

. Définition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ln:0;+∞ x"lnx

Exemple : L'équation

e x =5 admet une unique solution. Il s'agit de x=ln5 . A l'aide de la calculatrice, on peut obtenir une valeur approchée : x≈1,61

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 Remarque : Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation

y=x . Conséquences : a) x=e a est équivalent à a=lnx avec x > 0 b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

Exemples :

e ln2 =2 et lne 4 =4 Propriété : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxDémonstration : a) x=y⇔e lnx =e lny ⇔lnx=lny b) xYvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Méthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/_fpPphstjYw Résoudre dans I les équations et inéquations suivantes : a)

lnx=2 , I=0;+∞ b) e x+1 =5 I=! c)

3lnx-4=8

, I=0;+∞ d) ln6x-1 ≥2 , I= 1 6 e) e
  1. logarithme népérien exponentielle formule
  2. propriétés logarithme népérien et exponentielle
  3. exercice logarithme népérien et exponentielle
  4. fonction logarithme népérien et exponentielle pdf
  5. limite logarithme népérien et exponentielle
  6. cours logarithme népérien et exponentielle