Les matrices sur Exo7









Classe de Troisième

1) Propriété 1 : Si a et b sont deux nombres positifs alors : axb = a x b. Exemple : 48 = 16 x 3. = 16 x 3. = 4 x 3. = 4 3. 2) Propriété 
chapitre (Racines carres)


FONCTIONS AFFINES (Partie 2)

Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b 
Fonct aff


Identités remarquables

On reconnaît une expression du type a² + 2ab + b² avec a = x et b = 3. Vérifions : a² = x² ; b² = 9 ; 2ab = 2хxх3 = 6x . KB 1 sur 2 
identites


SECOND DEGRE (Partie 2)

En effet a = 3
Secondegre ESL





Tableaux des dérivées

%20primitives


) Quelques formules de trigonométrie vraiment utiles. a


Equation d'une droite

1- Si la droite D d'équation y = ax+b passe par les points A(xA; yA) et B(xB; yB) alors le coefficient directeur a est égal à. yB−yA. xB−xA . 2- La droite D 
droites


LES FONCTIONS DE REFERENCE

f x ax b. = + . Si. 0 a > alors f est croissante sur ℝ. Déterminer par calcul une expression de la fonction f telle que f (-2) = 4 et f (3) = 1.
Fonctions reference





les matrices sur Exo7

Comme la multiplication n'est pas commutative les identités binomiales usuelles sont fausses. En particulier
ch matrices


SECOND DEGRÉ (Partie 1)

Cette dernière écriture s'appelle la forme canonique de f. Démonstration : Comme a ≠ 0 on peut écrire pour tout réel x : f (x) = ax2 + bx + c. = a x2 + b.
Secondegre


Tableaux des primitives usuelles Toutes les primitives de ces

29 avr. 2010 f (x) = ax + b. F (x) = 1. 2 ax² + bx + k. ℝ f (x) = xn n entier différent de –1 ... 0[ ou ]0; +∞[ si n –2.
tableaux primitives


217799 les matrices sur Exo7

Matrices

ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

Dans ce chapitre,Kdésigne un corps. On peut penser àQ,RouC.

1. Définition

1.1. DéfinitionDéfinition 1.

UnematriceAest un tableau rectangulaire d"éléments deK. Elle est dite detaillenpsi le tableau possèdenlignes etpcolonnes. Les nombres du tableau sont appelés lescoefficientsdeA.

Le coefficient situé à lai-ème ligne et à laj-ème colonne est notéai,j.Un tel tableau est représenté de la manière suivante :

A=0 B

BBBBB@a

1,1a1,2...a1,j...a1,p

a

2,1a2,2...a2,j...a2,p

a i,1ai,2...ai,j...ai,p a n,1an,2...an,j...an,p1 C

CCCCCAouA=ai,j

16i6n

16j6pouai,j.

Exemple 1.

A=12 5

0 3 7 est une matrice 23 avec, par exemple,a1,1=1 eta2,3=7.

Encore quelques définitions :Définition 2.

Deux matrices sontégaleslorsqu"elles ont la même taille et que les coefficients correspondants sont égaux.

L"ensemble des matrices ànlignes etpcolonnes à coefficients dansKest notéMn,p(K). Les éléments deMn,p(R)

MATRICES1. DÉFINITION2sont appelésmatrices réelles.1.2. Matrices particulières Voici quelques types de matrices intéressantes :

•Sin=p(même nombre de lignes que de colonnes), la matrice est ditematrice carrée. On noteMn(K)au lieu de

Mn,n(K).

0 B BB@a

1,1a1,2...a1,n

a

2,1a2,2...a2,n............

a n,1an,2...an,n1 C CCA Les élémentsa1,1,a2,2,...,an,nforment ladiagonale principalede la matrice. Une matrice qui n"a qu"une seule ligne (n=1) est appeléematrice ligneouvecteur ligne. On la note

A=a1,1a1,2...a1,p.

De même, une matrice qui n"a qu"une seule colonne (p=1) est appeléematrice colonneouvecteur colonne. On

la note A=0 B BB@a 1,1 a

2,1...

a n,11 C CCA.

La matrice (de taillenp) dont tous les coefficients sont des zéros est appelée lamatrice nulleet est notée0n,p

ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matricesDéfinition 3(Somme de deux matrices).

SoientAetBdeux matrices ayant la même taillenp. LeursommeC=A+Best la matrice de taillenpdéfinie

Matrices

ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

Dans ce chapitre,Kdésigne un corps. On peut penser àQ,RouC.

1. Définition

1.1. DéfinitionDéfinition 1.

UnematriceAest un tableau rectangulaire d"éléments deK. Elle est dite detaillenpsi le tableau possèdenlignes etpcolonnes. Les nombres du tableau sont appelés lescoefficientsdeA.

Le coefficient situé à lai-ème ligne et à laj-ème colonne est notéai,j.Un tel tableau est représenté de la manière suivante :

A=0 B

BBBBB@a

1,1a1,2...a1,j...a1,p

a

2,1a2,2...a2,j...a2,p

a i,1ai,2...ai,j...ai,p a n,1an,2...an,j...an,p1 C

CCCCCAouA=ai,j

16i6n

16j6pouai,j.

Exemple 1.

A=12 5

0 3 7 est une matrice 23 avec, par exemple,a1,1=1 eta2,3=7.

Encore quelques définitions :Définition 2.

Deux matrices sontégaleslorsqu"elles ont la même taille et que les coefficients correspondants sont égaux.

L"ensemble des matrices ànlignes etpcolonnes à coefficients dansKest notéMn,p(K). Les éléments deMn,p(R)

MATRICES1. DÉFINITION2sont appelésmatrices réelles.1.2. Matrices particulières Voici quelques types de matrices intéressantes :

•Sin=p(même nombre de lignes que de colonnes), la matrice est ditematrice carrée. On noteMn(K)au lieu de

Mn,n(K).

0 B BB@a

1,1a1,2...a1,n

a

2,1a2,2...a2,n............

a n,1an,2...an,n1 C CCA Les élémentsa1,1,a2,2,...,an,nforment ladiagonale principalede la matrice. Une matrice qui n"a qu"une seule ligne (n=1) est appeléematrice ligneouvecteur ligne. On la note

A=a1,1a1,2...a1,p.

De même, une matrice qui n"a qu"une seule colonne (p=1) est appeléematrice colonneouvecteur colonne. On

la note A=0 B BB@a 1,1 a

2,1...

a n,11 C CCA.

La matrice (de taillenp) dont tous les coefficients sont des zéros est appelée lamatrice nulleet est notée0n,p

ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matricesDéfinition 3(Somme de deux matrices).

SoientAetBdeux matrices ayant la même taillenp. LeursommeC=A+Best la matrice de taillenpdéfinie