L2 - Math4 Exercices corrigés sur les séries numériques









Séries numériques

est semi-convergente. Allez à : Correction exercice 10. Exercice 11. Etudier la convergence de la série numérique de terme général :.
fetch.php?media=exomaths:exercices corriges series numeriques


séries-numériques.pdf

n≥0 u2 n diverge. Application à l'étude de suites. Exercice 56 [ 01070 ] [Correction]. Calculer la limite 
séries numériques


Exercices corrigés séries numériques

Il y a deux façons de traiter les exercices portant sur la convergence et le calcul d'une série : soit on montre la convergence avant de calculer la somme soit 
dddc f a ff a e acc c e


Séries Numériques

On suppose que α > 1. Déterminez un équivalent de Rn. Convergence des séries `a termes positifs. Exercice 7 : Soit ∑un une série convergente 
td series num





Séries

connaissant la nature de la série de terme général un puis en calculer la somme en cas de convergence. Correction ▽. [005698]. Exercice 12 ****. Soit (un)n 
fic


L2 - Math4 Exercices corrigés sur les séries numériques

Montrer par comparaison avec une intégrale
TD Séries


Suites et séries numériques (exercices corrigés)

Suites et séries numériques (exercices corrigés). Exercice 1 (Théorème de Césaro exercice classique). Soit (un)n∈N∗ une suite.
matieres


Séries numériques

près de sa somme. Exercice 9. Ensi MP 2002. On suppose que la série à termes positifs de terme général un est divergente et on pose Sn = ∑.
numériques





Pour démarrer Calculs de sommes

Exercices sur les séries numériques. Pour démarrer. Exercice 1 (Nature de série) Déterminer la nature de la série de terme général un : 1. un = arctan(n5).
exos series


Exercices de mathématiques MPSI 4

Sep 2 2018 Exercice 4.10 – (Dérivée de la série géométrique). ... On définit la suite (fn)n∈N∗ de fonctions numériques par :.
exercices


217872 L2 - Math4 Exercices corrigés sur les séries numériques

9n◦2N:8nn◦;an+1

a nbn+1 b n: n1un???? u n=1 n (lnn): ??? ??????? ?? ??? >1? ?? ?????? ??? ??????? ?? ??? <1? f (t) =1 t(lnt): ??? ??????? ?? ??? <1? n11 q n?????q2R? ??∑ n11 n(n+ 1): n11 n!;∑ n11 n n;∑ n1n! n n;∑ n1n n (2n)!: n1a n n!;∑ n1a n n a n= 1 +1 2 ++1 n lnn: n1( nln( 1 +1 n 2n

2n+ 1)

n21 nlnn!;∑ n2n (lnn!)2;∑ n1(n!)c (2n)!????c >0: n2(1)n n

2+ (1)n;∑

n11 + (1)np n n n2(1)np nln(n+ 1 n1) n2ln(

1 +(1)n

n n1sin((1)n n u n:=(1)n p n ??vn:=(1)n p n+ (1)n ?? ???? ??? ?? ???? ??????? ???? ???unvn? u n:=an2p n 2 p n +bn: n2Nun???? u n:= ln( cos1 2 n) sin (1 2 n1) = 2sin(1 2 n) cos(1 2 n) ?? ????n? ?????? a n+1=anan+1 a nMbnbn+1 b n=Mbn+1; N n=0a n=n ◦1∑ n=0a n+N∑ n ◦a n+MN∑ n=n◦b n+M1∑ n=n◦b n; ??:=∑n◦1 n=0an) N n=0b n=n ◦1∑ n=0b n+N∑ n ◦b n+1 M N n=n◦a n; ??:=∑n◦1 n=0bn? ??????? ?? ?????(∑N n=0an) n=0bn)

N???? ????? ????

??? ?? >1? ?????

9n◦2N:8nn◦;an+1

a nbn+1 b n: n1un???? u n=1 n (lnn): ??? ??????? ?? ??? >1? ?? ?????? ??? ??????? ?? ??? <1? f (t) =1 t(lnt): ??? ??????? ?? ??? <1? n11 q n?????q2R? ??∑ n11 n(n+ 1): n11 n!;∑ n11 n n;∑ n1n! n n;∑ n1n n (2n)!: n1a n n!;∑ n1a n n a n= 1 +1 2 ++1 n lnn: n1( nln( 1 +1 n 2n

2n+ 1)

n21 nlnn!;∑ n2n (lnn!)2;∑ n1(n!)c (2n)!????c >0: n2(1)n n

2+ (1)n;∑

n11 + (1)np n n n2(1)np nln(n+ 1 n1) n2ln(

1 +(1)n

n n1sin((1)n n u n:=(1)n p n ??vn:=(1)n p n+ (1)n ?? ???? ??? ?? ???? ??????? ???? ???unvn? u n:=an2p n 2 p n +bn: n2Nun???? u n:= ln( cos1 2 n) sin (1 2 n1) = 2sin(1 2 n) cos(1 2 n) ?? ????n? ?????? a n+1=anan+1 a nMbnbn+1 b n=Mbn+1; N n=0a n=n ◦1∑ n=0a n+N∑ n ◦a n+MN∑ n=n◦b n+M1∑ n=n◦b n; ??:=∑n◦1 n=0an) N n=0b n=n ◦1∑ n=0b n+N∑ n ◦b n+1 M N n=n◦a n; ??:=∑n◦1 n=0bn? ??????? ?? ?????(∑N n=0an) n=0bn)

N???? ????? ????

??? ?? >1? ?????