LOGARITHME NEPERIEN









Formulaire des DL en 0 1 Calculs de DL

29 nov. 2012 tan x à l'ordre 4 ;log(1 + ex) à l'ordre 4 ;log(1 + sin x); √1 + x3 à l'ordre 4. 2 Calculs de limites. Exercice 2.1. Déterminer les limites ...
td analyse L


New sharp bounds for the logarithmic function

5 mars 2019 In this paper we present new sharp bounds for log(1 + x). We prove that our upper bound is sharper than all the upper bounds presented ...


)) Assessed by the Rmpfr

accurately in a simple and optimal manner
log mexp note


FONCTION LOGARITHME NEPERIEN

fonction logarithme décimale notée log est définie par : log(x) = lnx ln10. Conséquences : a) y = lnx avec x > 0 ⇔ x = ey b) ln1= 0 ; lne = 1 ; ln. 1.
LogTS





TD 1 Intégrales généralisées

16 sept. 2016 aucun problème : elles sont toutes deux O(1/x²) au V(±∞). 1ère méthode : on peut les calculer séparément par calcul des primitives. > f:=1/(x^4 ...
maths td support


On the Power Series for log (1 + z)

series we now take as the definition of log (1 + z); its coefficients are most m i I) -(e2ri/m _ l)n < m A A 2-eO as me x).


LOGARITHME NEPERIEN

x. • Pour tout réel x on a ln e x. = x. • ln 1 = 0. • ln e = 1 log a. • Pour tout n ∈ ZZ
ln


1 Approximation de ln(1 + x) 2 Modélisation des résistances (6 points)

4 déc. 2008 Définissez une fonction diff calculant la différence entre la fonction Caml f définie comme suit : let f = function x -> log (1.+.x);; et la ...
examenTP SM





DEVELOPPEMENTS LIMITÉS USUELS Le développement limité de

Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" 1. 1 一 x. 1 + x + x2 + ... + xn + xne(x) sinx x 一x3.
m


6.2 Properties of Logarithms

(Inverse Properties of Exponential and Log Functions) Let b > 0 b = 1. • ba = c if and only if logb(c) = a. • logb (bx) = x for all x and blogb(x) = x for 
S&Z . & .


213437 LOGARITHME NEPERIEN - Logarithme népérien - 1 / 4

LOGARITHME NEPERIEN

La fonction exponentielle est une bijection de IR sur ] 0 ; [. C'est-à-dire que pour tout b ] 0 ; [ , il existe un unique réel a tel que e a = b .

On note a = ln b , ce qui se lit logarithme népérien de b . Ainsi à tout réel x strictement positif, on peut associer un unique réel noté ln ( x ).

Définition

On appelle fonction logarithme népérien la fonction qui à un réel x strictement positif, fait correspondre ln ( x ) .

ln : ] 0 ; + [ IR x ln x

On écrit souvent ln x au lieu

de ln ( x )

Remarques :

La fonction ln est une bijection de ] 0 ; [ dans IR.

L'équivalence x IR

y = ln x y IR e

y = x traduit le fait que les fonctions exponentielle et logarithme népérien sont réciproques l'une de l'autre.

Propriétés

Pour tout réel x strictement positif , on a e ln x = x

Pour tout réel x , on a ln e x = x

ln 1 = 0 ln e = 1

Remarque :

La fonction exponentielle transformant une somme en produit, on peut penser que la fonction logarithme népérien qui est sa fonction réciproque,

transforme un produit en somme.

2 ) PROPRIETES ALGEBRIQUES

Pour tous réels a et b strictement positifs on a : ln ( a b ) = ln a + ln b On peut généraliser cette propriété à plusieurs nombres. ln 1 a= - ln a ln a b = ln a - ln b ln a = 1 2a

Pour tout n ZZ , ln a n = n ln a

Preuve :

Les démonstrations se font principalement en utilisant les propriétés de la fonction exponentielle.

e ln a + ln b = e ln a e ln b = a b . Or si e y = x , alors y = ln x . On a donc ln a + ln b = ln (

a b ) e- ln a = 1 e ln a = 1 a donc - ln a = ln 1 a e ln a - ln b =e ln a e ln b = a b donc ln a - ln b = ln a b ln a = ln (a a ) = ln a + ln a = 2 ln a donc ln a = 1 2a Pour tout n ZZ , e n ln a = ( e ln a ) n = a n donc ln a n = n ln a

3 ) ETUDE DE LA FONCTION LOGARITHME NEPERIEN

La fonction ln est strictement croissante sur IR+* .

La croissance de la fonction ln est lente.

Par exemple : ln ( 10

8 ) 18,42

Preuve :

Soit a et b deux réels strictement positifs tels que a < b.

Supposons que ln a ln b

La fonction exponentielle étant croissante on aurait e ln a e ln b donc a b ce qui est en contradiction avec l'hypothèse.

On ne peut donc pas avoir ln a ln b.

On a donc ln a < ln b

On en déduit que la fonction ln est strictement croissante sur ] 0 ; [. - Logarithme népérien - 2 / 4

Conséquences

Pour tous réels strictement positifs a et b

ln a = ln b a = b ln a < ln b a < b ln a ln b a b a > 1 ln a > 0 si 0 < a < 1 alors ln a < 0 - Logarithme népérien - 1 / 4

LOGARITHME NEPERIEN

La fonction exponentielle est une bijection de IR sur ] 0 ; [. C'est-à-dire que pour tout b ] 0 ; [ , il existe un unique réel a tel que e a = b .

On note a = ln b , ce qui se lit logarithme népérien de b . Ainsi à tout réel x strictement positif, on peut associer un unique réel noté ln ( x ).

Définition

On appelle fonction logarithme népérien la fonction qui à un réel x strictement positif, fait correspondre ln ( x ) .

ln : ] 0 ; + [ IR x ln x

On écrit souvent ln x au lieu

de ln ( x )

Remarques :

La fonction ln est une bijection de ] 0 ; [ dans IR.

L'équivalence x IR

y = ln x y IR e

y = x traduit le fait que les fonctions exponentielle et logarithme népérien sont réciproques l'une de l'autre.

Propriétés

Pour tout réel x strictement positif , on a e ln x = x

Pour tout réel x , on a ln e x = x

ln 1 = 0 ln e = 1

Remarque :

La fonction exponentielle transformant une somme en produit, on peut penser que la fonction logarithme népérien qui est sa fonction réciproque,

transforme un produit en somme.

2 ) PROPRIETES ALGEBRIQUES

Pour tous réels a et b strictement positifs on a : ln ( a b ) = ln a + ln b On peut généraliser cette propriété à plusieurs nombres. ln 1 a= - ln a ln a b = ln a - ln b ln a = 1 2a

Pour tout n ZZ , ln a n = n ln a

Preuve :

Les démonstrations se font principalement en utilisant les propriétés de la fonction exponentielle.

e ln a + ln b = e ln a e ln b = a b . Or si e y = x , alors y = ln x . On a donc ln a + ln b = ln (

a b ) e- ln a = 1 e ln a = 1 a donc - ln a = ln 1 a e ln a - ln b =e ln a e ln b = a b donc ln a - ln b = ln a b ln a = ln (a a ) = ln a + ln a = 2 ln a donc ln a = 1 2a Pour tout n ZZ , e n ln a = ( e ln a ) n = a n donc ln a n = n ln a

3 ) ETUDE DE LA FONCTION LOGARITHME NEPERIEN

La fonction ln est strictement croissante sur IR+* .

La croissance de la fonction ln est lente.

Par exemple : ln ( 10

8 ) 18,42

Preuve :

Soit a et b deux réels strictement positifs tels que a < b.

Supposons que ln a ln b

La fonction exponentielle étant croissante on aurait e ln a e ln b donc a b ce qui est en contradiction avec l'hypothèse.

On ne peut donc pas avoir ln a ln b.

On a donc ln a < ln b

On en déduit que la fonction ln est strictement croissante sur ] 0 ; [. - Logarithme népérien - 2 / 4

Conséquences

Pour tous réels strictement positifs a et b

ln a = ln b a = b ln a < ln b a < b ln a ln b a b a > 1 ln a > 0 si 0 < a < 1 alors ln a < 0
  1. log 1 x
  2. log1/x
  3. log1/x^2
  4. log 1/3 x
  5. log(1+x) series
  6. log(1+x) taylor
  7. log 1/x differentiation
  8. log(1+x) approximation