[PDF] EXAMEN 1 - Corrigé etf0(x) = 20xe10x2cos(x) e2sin(





Previous PDF Next PDF



Untitled

2) Algorithme du point fixe. 3) Théorème du point fixe. 4) Exercice calcul numérique de. 5) Deux exercices corrigés. Point fixe.



Analyse Numérique

Corrigé du TD 5. EXERCICE admettant un point fixe l ? I i.e. g(l) = l. ... Par suite d'apr`es l'exercice 1



Méthode du point fixe pour la résolution de léquation fpxq “ x.

Analyse numérique - TD4 & TD5 - Corrigé des exercices 2-4-5-7-8-9. Résolution numérique des équations non linéaires. Méthode du point fixe pour la 



1 Point fixe et Newton

Calculer u2 puis donner un encadrement de



Analyse Numérique

Exercice 1.1 En écrivant un petit programme trouver la capacité et le pas de votre Commençons par traiter le cas du point fixe qui est fondamental d'un ...



1 Point fixe et Newton

Calculer u2 puis donner un encadrement de



2.2.5 Exercices (méthodes de point fixe)

SYSTÈMES NON LINÉAIRES. 2.2.5 Exercices (méthodes de point fixe). Exercice 76 (Calcul différentiel). Suggestions en page 163 corrigé détaillé en page 163.



Analyse Numérique - Exercices Corrigés

c'est-à-dire k ? 21 itérations sont nécessaires. Exercice 7. 1. On regarde la méthode de Newton comme une méthode de point fixe : x(k 



Corrigé du D.M. 1 info : points fixes des fonctions `a domaine fini

Remarque 2 : une fonction croissante de En dans En admet toujours un point fixe. Démonstration de cette remarque : Ceci est un joli exercice de mathématiques.



Réponses aux exercices du chapitre 2

c) Déterminer pour chaque point fixe trouvé en a) la valeur de ? pour laquelle la conver- gence de la méthode des points fixes sera quadratique. Solution a) On 



225 Exercices (méthodes de point x e) - univ-amufr

2 2 5 Exercices (méthodes de point x e) 2 2 LES MÉTHODES DE POINT FIXE CHAPITRE 2 SYSTÈMES NON LINÉ AIRES 2 2 5 Exercices (méthodes de point x e) Exercice 76 (Calcul différentiel) Suggestionsen page 163 corrigé détaillé en page 163 Soit f 2 C2(IRn;IR) : 1 Montrer que pour tout x 2 IRn il existe un unique vecteur a (x ) 2 IRntel



Théorèmes de point fixe

La méthode converge vers le point fixe (r r) qui est situé à l'intersection de la courbe et de la droite Si la méthode démarre d'une autre valeur initiale prise dans la même région la suite tend vers le même point fixe



Théorèmes de point fixe

Exercice 2 : Montrer que toute fonction continue bornée de R dans R admet au moins un point fixe Solution : Si f(R) ? [a b] alors f([a b]) ? [a b] Appliquer la prop 1 à la restriction de f à [a b] Exercice 3 : Soit f ? C([a b] R) telle que ? b a ( ) f t dt = 2 b²?a² Montrer que ?c ? ]a b[ f(c) = c



EXAMEN 1 - Corrigé

etf0(x) = 20xe10x2cos(x) e2sin(x) :Celadonne 0f’jf(x)j x= 4:1322 1012 Question3 (25points) Onveutcalculerl’uniqueracinepositiverdel’équationf(x) = 0 où f(x) = exx 2: On vous propose d’appliquer 2 méthodes de points ?xes basées sur les fonctions suivantes g 1(x) = ex2 g



Comment calculer le point fixe d’une fonction?

» Paul Valéry (Cahiers II, p. 795) Introduction Si f est une fonction d’un ensemble E dans lui-même, on appelle point fixe de f tout élément x de E tel que x = f(x).

Qu'est-ce que le théorème de point fixe?

Le théorème de point fixe que nous allons maintenant exposer est l’un des plus importants des mathématiques : il n’est pas exagéré de parler de «métathéorème» , tant sont nombreuses ses applications pratiques et théoriques.

Qu'est-ce que la propriété de point fixe?

Propriété de point fixe . Définition 1 : On dit qu’un espace métrique (ou topologique) X vérifie la propriété du point fixe (en abrégé, PPF) si toute application continue g : X ? X possède au moins un point fixe. Naturellement tout espace topologique homéomorphe à X possède aussi la propriété de point fixe.

Comment calculer les points fixes?

Enfin, a = f(a) et a ? x0impliquent a ? xnpour tout n par récurrence, donc a ? x ; idem pour b. Remarque : Si E a un plus petit et un plus grand éléments, notés resp. ? et ?, on posera x0= ?, y0= ?. Alors E aura un plus petit et un plus grand points fixes a = sup f n(?) et b = inf fn(?). Comparaison des deux théorèmes.

EXAMEN 1 - Corrigé

MAT-2910 : Analyse numérique pour l"ingénieur Hiver 2010

Remarques :

1) Toutes lesréponses doivent être justifiées. Dans le cas contraire, une ré-

ponse sera considérée comme nulle.

2) Seules les calculatrices avec l"auto-collant de la Faculté sont autorisées.

3) Déposer votrecarte d"identité avec photo sur le coin gauchede votre

table etassoyez-vous du côté droit.

4) Nous ne répondrons àaucunequestion concernant ces exercices, sauf si nous

constatons la présence d"une ambiguïté ou d"une erreur dans l"énoncé des ques- tions, auquel cas la réponse sera annoncée à l"ensemble des étudiants.

5) L"examen est noté sur100points et compte pour40%de la note finale.

Question 1. (15 points)

Dans cet exercice, on cherche une valeur approximative dee1. Le développement de Taylor deexen0de degrénest

1 +x+x22

+:::+xnn! (i) [10 pts] Donner une majoration de l"erreur lorsqu"on utilise le développement de Taylor en0de degrénpour avoir une approximation dee1. En vous basant sur cette majoration estimer la valeur denpour garantir que l"erreur de cette approximation est inférieure à0:5101. (ii) [5 pts] Pour cette valeur den, sans faire de calcul, que pouvez-vous dire du nombre de chiffres significatifs de l"approximation que l"on obtiendrait?

Réponses :

(i)Rn(1)1(n+1)!e1 R n(1)0:227101pourn= 4,Rn(1)0:113pourn= 3, doncRn(1)

0:5101à partir den= 4.

(ii) Commee1= 2:7:::, il y a 2 chiffres significatifs 1

Question 2. (10 points)

Estimez l"erreur dans l"évaluation de

f(x) =e10x2cos(x) si on sait quexest égal à2à106près. Réponse :On applique la formule de propagation d"erreur avecx?= 2etx= 106 etf0(x) = 20xe10x2cos(x)e10x2sin(x): Cela donne f' jf0(x)jx= 4:13221012

Question 3. (25 points)

On veut calculer l"unique racine positiverde l"équationf(x) = 0où f(x) =exx2: On vous propose d"appliquer2méthodes de points fixes, basées sur les fonctions suivantes g

1(x) =ex2

g

2(x) = ln(2 +x)

(i) [4 pts] Comment ces fonctionsg1etg2ont-elles été obtenues? Détaillez vos réponses. (ii) [2 pts] Dans quel intervalle de longueur1se trouve cette racine? (justifier) (iii) [9 pts] En déduire si les méthodes de points fixes utilisantg1etg2convergent, et leur ordre de convergence le cas échéant. (iv) [3 pts] Faire2itérations à partir dex0= 1pour chacune des2méthodes de point fixe. (v) [5 pts] Appliquer la méthode de Newton à l"équation de départ et faites2ité- rations à partir dex0= 1. (vi) [2 pts] Pour quelle(s) valeur(s) dex0ne peut-on pas démarrer la méthode de

Newton?

Réponses :

(i)f(x) = 0()f(x) +x=x(2 points) e xx2 = 0()ex=x+ 2()x= ln(x+ 2) (ii)f(1) =e3<0etf(2) =e24>0, d"où l"intervalle[1;2] 2 (iii)g01(x) =ex. Si1x2,e1exe2donc la méthode de point fixe diverge. g

02(x) =12+x.

1x2()3x+ 24()13

1x+ 214

donc la méthode de point fixe converge carg0(r)13 et elle est d"ordre 1 car g

0(r)14

(iv)x1=g1(1) =e2,x2=g1(e) =ee22(1 point) x

1=g2(1) = ln(3),x2=g2(ln(3)) = ln(ln(3) + 2) = 1:1309:::

(v)xn+1=xnexnxn2e xn1x1=2e1= 1:1639:::,x2= 1:1464:::(2 points) (vi) Les valeurs pour lesquellesf0(x0) = 0, c"est-à-direx0= 0.

Question 4. (25 points)

On considère le système linéaire

0 B @4 2 0 2 5 2

0 2 51

C A0 B @x 1 x 2 x 31
C A=0 B @0 0 161
C A(1) (i) [10 pts] L"inverse de la matrice est 164
0 B @2110 4

10 208

48 161

C A Sans calculer la solution de(1), en prenantx= (0;0;10)comme approximation de la solution de (1), déterminer un encadrement de l"erreur relative en norme infinie (l1) (ii) [10 pts] Factoriser la matrice. (ii) [5 pts] Utiliser cette factorisation pour résoudre le système linéaire.

Réponses :

(i) On akbk= 16,Ax= (0;20;50)t,krk=kbAxk= 34,kAk= 9,kA1k=3864 cond(A) =34264 =17132 . donc

0:397:::=32171

3416
jj~ejjjj~xjj17132 3416
= 11:35::: 3 (ii) L"étudiant pouvait utiliser la factorisation qu"il souhaitait, sans mettre à profit la structure particulière de la matrice puisqu"on n"a rien précisé dans la question. La factorisation de Choleski fait apparaitre la matrice L=0 B @2 0 0 1 2 0

0 1 21

C A

La facorisation

eLUfait apparaitre les matrices e L=0 B @1 0 0

0:5 1 0

0 0:5 11

C

A; U=0

B @4 2 0 0 4 2

0 0 41

C A Tandis que la décompositionLeUfait apparaitre les transposés des matrices précédentes. (ii) Résoudre en utilisant la factorisation précédente.

Question 5. (25 points)

On veut résoudre le système non linéaire

x 2= 1 x

2+y2= 2

x

2+xy+z2= 1

(i) [10 pts] Effectuer 3 itérations de la méthode de Newton en partant du vecteur initial(x0;y0;z0) = (0:75;0:75;0:75). (ii) [10 pts] En définissant l"erreur par E n=k(xnxn+1;ynyn+1;znzn+1)k1 estimer l"ordre de convergence de la méthode de Newton à partir des3itérations obtenues à la question précédente. (iii) [5 pts] Pour quels vecteurs initiaux ne peut-on pas démarrer l"algorithme?

Réponses :

(i) On trouve : (x1;y1;z1) = (1:041666666;1:041666666;1:0416666666) (x2;y2;z2) = (1:0008333333;1:0008333333;1:0008333333) (x3;y3;z3) = (1:000000346933111;1:000000346933111;1:000000346933111). 4 (ii) On trouveE0= 2:92101,E1= 4:08102,E0= 8:33102. DoncE1=E0=

0:14,E2=E1= 0:0204, etE1=E20= 0:48,E2=E21= 0:50. D"où une convergence

quadratique. (iii) Ce sont les vecteurs pour lesquels le jacobien est singulier. on adet(J) = 0() xyz= 0()x= 0ouy= 0ouz= 0. 5

MAT-2910 : Aide-mémoire pour l"examen I

Analyse d"erreurs

- Développement de Taylor :f(x0+h) =Pn(h) +Rn(h)où : P n(h) =f(x0) +f0(x0)h+f00(x0)h22! +f000(x0)h33! ++f(n)(x0)hnn!et R n(h) =f(n+1)((h))h(n+1)(n+ 1)!où(h)est compris entrex0etx0+h - Une fonctionf(h)est ungrand ordredehnau voisinage de 0 (notéf(x) = O(hn)) s"il existe une constante positiveCtelle qu"au voisinage de 0 on a : f(h)h n C - propagation d"erreurs en une variable : f' jf0(x)jx - propagation d"erreurs en plusieurs variables : f' @f(x;y;z)@x x+ @f(x;y;z)@y y+ @f(x;y;z)@z z

Équations non linéaires

- Algorithme des points fixes :xn+1=g(xn) - Convergence des méthodes de points fixes : sien=xnralors : e n+1=g0(r)en+g00(r)e2n2 +g000(r)e3n3! - Méthode de Steffenson :x1=g(x0)etx2=g(x1) x e=x0(x1x0)2x

22x1+x0

- Méthode de Newton :xn+1=xnf(xn)f 0(xn) 6 - Une racinerde la fonctionf(x)estde multiplicitémsif(x) = (xr)mh(x) pour une fonctionh(x)qui vérifieh(r)6= 0ou encore si : f(r) =f0(r) =f00(r) ==f(m1)(r) = 0; f(m)(r)6= 0 - Taux de convergence de la méthode de Newton dans le cas d"une racine multiple : 11=m - Méthode de la sécante :xn+1=xnf(xn)(xnxn1)f(xn)f(xn1)

Systèmes d"équations algébriques

- Normes vectorielles : jj~xjj1=nX i=1jxij;jj~xjj1= max1injxij - Normes matricielles : jjAjj1= max1jnn X i=1jaijj;jjAjj1= max1inn X j=1jaijj; - Conditionnement : condA=jjAjj jjA1jj - Borne pour l"erreur : si~xest la solution analytique et~xest une solution ap- proximative deA~x=~b, on pose~e=~x~xet~r=~bA~xet on a :

1condAjj~rjjjj

~bjjjj~ejjjj~xjjcondAjj~rjjjj ~bjj - Systèmes non-linéaires : pour~xidonné, on résout : 2 6

6666666666664@f

1@x

1(~xi)@f1@x

2(~xi)@f1@x

n(~xi) @f 2@x

1(~xi)@f2@x

2(~xi)@f2@x

n(~xi) @f n@x

1(~xi)@fn@x

2(~xi)@fn@x

n(~xi)3 7

77777777777752

6 6664x
1 x 2... x n3 7

7775=2

6 6664f

1(~xi)

f

2(~xi)...

f n(~xi)3 7 7775
et on pose~xi+1=~xi+~x 7quotesdbs_dbs12.pdfusesText_18
[PDF] pf a +qf b p q f c

[PDF] continuité uniforme exercices corrigés

[PDF] une fonction convexe admet toujours un minimum global

[PDF] fonctions convexes cours

[PDF] une fonction convexe n'a qu'un nombre fini de minima

[PDF] dérivabilité d'une fonction exercices corrigés

[PDF] montrer que f est dérivable sur r

[PDF] montrer qu'une fonction n'est pas dérivable en un point

[PDF] fonction continue sur un compact atteint ses bornes

[PDF] majoré minoré suite

[PDF] matrice diagonalisable exercice corrigé

[PDF] exemple dossier de synthèse bac pro sen tr

[PDF] rapport de synthèse bac pro sen avm

[PDF] endomorphisme nilpotent exercice corrigé

[PDF] endomorphisme nilpotent problème