[PDF] Convergence de suites - Université Paris Cité





Previous PDF Next PDF



Convergence des suites

Montrer qu'une suite majorée à partir d'un certain rang est majorée. On dit qu'une suite (un) est convergente



Convergence de suites

5 nov. 2010 Soit (un) une suite convergente alors sa limite l est unique. ... petit majorant de la suite



Convergence de suites Suites récurrentes

Etudier une suite c'est savoir si elle est divergente ou convergente



Suites et raisonnements avec des ? - Correction des exercices

Exercice 2 : Montrer qu'une suite de nombres entiers relatifs convergente est stationnaire. Correction : Soit (un) une telle suite et l sa limite.



Chapitre 1 Suites réelles et complexes

Pour que cette notation ait un sens il faut montrer qu'une suite convergente admet une unique limite ! Proposition 1.2.2. Si une suite converge



Suites 1 Convergence

Montrer que toute suite convergente est bornée. Indication ?. Correction ?. Vidéo ?. [000506]. Exercice 2. Montrer qu'une suite d'entiers qui converge 



Suites 1 Convergence

n'est pas convergente. Exercice 4 Montrer qu'une suite d'entiers qui converge est stationnaire `a partir d'un certain rang. Exercice 5 Soit Hn =1+.



Sommaire 1. Convergence des Séries Numériques

Théorème : ?un une série alternée telle que la suite (





Convergence des suites numériques

Si les suites (un) et (wn) convergent vers une même limite finie l alors la suite (vn) est convergente et converge vers cette même limite l. Page 7. 14.



LIMITE DUNE SUITE

Pour montrer qu'une suite (un)n? est monotone Théorème (Convergence et caractère borné) Toute suite convergente est bornée. Démonstration. Soit (un)n?.



1 Suites convergentes - univ-amufr

n une suite de nombres r eels On dit que (u n) n est stationnaire si et seulement si 9N2N; 8n N; u n = u N: Autrement dit (u n) n est constante a partir d’un certain rang Proposition Toute suite stationnaire est convergente Preuve A faire en exercice



Convergence de suites - Université Paris Cité

B Comment montrer qu’une suite r ecurrente est monotone? 1 Directement Consid erons la suite r ecurrente d e nie par la donn ee de u 0 2R et la relation de r ecurrence u n+1 = u n + u2n pour tout entier naturel n On a alors u n+1 u n = u2 n 0 et donc cette suite est croissante! 2 En utilisant la proposition suivante Proposition 1



Feuille d'exercices o14 : Suites numériques

Exercice 3[Suite d'entiers] Montrer qu'une suite d'entier converge si et seulement si elle est stationnaire Que dire de sa limite? Exercice 4[Limites version ?] En utilisant la dé nition de la limite ( avec des ? ) montrer que l'on a les limites suivantes : 1 (ln(n)) tend vers +?; 2 (e?n) tend vers 0; 3 (1 n) tend vers 0; 4 (?



Searches related to comment montrer qu+une suite est convergente PDF

Exercice 2 Montrer que toute suite convergente est born´ee Exercice 3 Montrer que la suite (u n) n?N d´e?nie par u n = (?1)n + 1 n n’est pas convergente Exercice 4 Montrer qu’une suite d’entiers qui converge est stationnaire a partir d’un certain rang Exercice 5 Soit H n = 1+ 1 2 + + 1 n 1 En utilisant une int´egrale

Comment définir une suite convergente ?

Définition : On dit que la suite ( ) admet pour limite , si est aussi proche de que l’on veut à partir d'un certain rang et on note : lim= . Une telle suite est dite convergente. Exemple : La suite ( ) définie pour tout non nul par =1+ a pour limite 1. On a par exemple : =1+ =1,0001 =1+ =1,000001

Comment montrer qu'une suite converge ?

Utiliser plusieurs manières pour montrer qu'une suite converge. Terminale S . . Montrer quune suite relle est convergente. . Une suite qui ne converge pas est dite divergente. = . . ) tend vers +. ). = f (n). Si lim = . converge aussi vers (Thorme des gendarmes). Une suite croissante et majore est convergente (Thorme de la convergence monotone).

Comment montrer que une suite converge vers un réel ?

Montrer que si 0 ? ` < 1, la suite (un ) converge vers 0 et si ` > 1, la suite (vn ) tend vers +?. Montrer que si ` = 1, tout est possible. Correction H [005232] Exercice 1536 *** ? ) converge vers un réel `, alors ( n un ) converge et a 1. Soit u une suite de réels strictement positifs. Montrer que si la suite ( uun+1 n même limite. 2.

Comment montrer qu’une suite d’éléments converge vers a ?

Tracer les graphes des fonctions f , | f |, f+ , f? où : f+ = max ( f , 0), f? = min ( f , 0). Exercice 1414 Si a = sup A, montrer qu’il existe une suite d’éléments de A qui converge vers a. Réciproque. Exercice 1415 Soit A = Q ? ]0, 1 [ et a, b ? R+ .

  • Past day

Convergence de suites - Université Paris Cité

Convergence de suites

Exercice 1Les suites dont on donne ci-dessous le terme general sont-elles convergentes? a) cosn+ 3nlnn+ 2nb)p4n2+ 5n+ 62nc)enpn d)sinne ne)nX k=0e kf)3n2n3 n+ 2n g) sinnn h) 2n(1)nn2 Exercice 21) Etudier la convergence de la suite de terme generalun=nX k=11k(k+ 1).

2) On considere la suite de terme generalsn=nX

k=11k 2. i) Montrer que (sn) est croissante. ii) Montrer que pour8n2,sn1 +un1, et en deduire que (sn) est majoree. iii) Que dire de la convergence de (sn)?

Suites recurrentes

I. POSITION DU PROBLEME

SoientIun intervalle deR, etf:I!Rune fonction. Supposons que l'intervalleI est stable parf, c'est-a-dire quef(I)I. Dans les exemples simples,fsera une fonction continue surI. On se donne un elementu02I, et l'on veut etudier la suite (un) denie par u

0et la relation de recurrenceun+1=f(un).

L'hypothese de stabilite de l'intervalleIparfest essentielle, car sinon la suite (un) ne serait pas denie. Tous les termes de la suite (un) appartiennent donc a l'intervalleI. Etudier une suite, c'est savoir si elle est divergente ou convergente, et dans ce cas etudier sa limite. Un moyen d'etude consiste a analyser le sens de variation de la suite (un) et a chercher si elle est majoree ou minoree. Nous savons en eet que toute suite croissante et majoree est convergente, et que toute suite decroissance minoree est convergente egalement.

II. LES TROIS CAS DE FIGURE

Dans ce qui suit, nous allons nous poser trois questions : { Comment montrer qu'une suite recurrente est majoree ou minoree? { Comment montrer qu'une suite recurrente est monotone? { Que peut-on dire de la limite eventuelle d'une suite recurrente? A. Comment montrer qu'une suite recurrente est majoree ou minoree? Supposons pour simplier les idees quefest continue surR(doncI=R). Si nous voulons montrer que la suite (un) est majoree, nous devons montrer qu'il existeM2Rtel que pour 1 tout entiern,unM. Pour cela, il sut quef(] 1;M])] 1;M], et l'on peut alors montrer par recurrence surnqueunM. La conditionf(] 1;M])] 1;M] signie que l'intervalle ]1;M] est stable parf. Si la fonctionfn'est pas denie surRtout entier mais sur un intervalleIstrictement contenu dansR, il faut alors remplacer ] 1;M] par ] 1;M]\I. Si de m^eme nous voulons montrer que la suite (un) est minoree, nous devons montrer qu'il existem2Rtel que pour tout entiern,unN. Pour cela, il sut quef([N;1[)[N;1[, et l'on peut alors montrer par recurrence surnqueunN. La conditionf([N;1[)[N;1[ signie que l'intervalle [N;1[ est stable parf. Si la fonctionfn'est pas denie surRtout entier mais sur un intervalleIstrictement contenu dansR, il faut alors remplacer [N;1[ par [N;1[\I. B. Comment montrer qu'une suite recurrente est monotone?

1. Directement

Considerons la suite recurrente denie par la donnee deu02Ret la relation de recurrence u n+1=un+u2npour tout entier natureln. On a alorsun+1un=u2n0, et donc cette suite est croissante!

2. En utilisant la proposition suivante

Proposition 1.SoientIun intervalle deR, etf:I!Rune fonction continue. Supposons que l'intervalleIest stable parf. Notons(un)la suite denie par la donnee deu02Iet la relation de recurrenceun+1=f(un). Si la fonctionfest strictement croissante surI, alors la suite(un)est monotone. Siu1u0>0, elle est strictement croissante. Siu1u0<0, elle est strictement decroissante. Enn, siu1=u0, elle est constante egale au0. Preuve 1.Sifest strictement croissante, et siu0< u1, verions par recurrence surn que pour toutnentier naturel nous avonsun< un+1. La propriete est vraie au rang 0. Supposons qu'elle est egalement vraie au rangn. On a doncun< un+1. La stricte croissance defimplique alorsf(un)< f(un+1), c'est-a-direun+1< un+2, de sorte que la propriete est vraie au rangn+ 1. Attention, sifest strictement decroissante, la suite (un) n'est pas monotone. En eet, si la suite (un) etait par exemple strictement croissante, on aurait pour tout entier naturel n,un< un+1. La stricte decroissance defimpliquerait alorsf(un)> f(un+1), c'est-a-dire u n+1> un+2, ce qui est absurde. On pourrait verier de m^eme que (un) ne peut pas ^etre decroissante. On dispose neanmoins le resultat suivant. Proposition 2.SoientIun intervalle deR, etf:I!Rune fonction continue. Supposons que l'intervalleIest stable parf. Notons(un)la suite denie par la donnee deu02Iet la relation de recurrenceun+1=f(un). Si la fonctionfest strictement decroissante surI, alors les deux suite(vn)et(wn) denies respectivement parvn=u2netwn=u2n+1sont monotones. 2 Siu2u0>0, la suite(vn)est strictement croissante. Siu2u0<0, elle est strictement decroissante. Enn, siu2=u0, elle est constante egale au0. Siu3u1>0, la suite(wn)est strictement croissante. Siu3u1<0, elle est strictement decroissante. Enn, siu3=u1, elle est constante egale au1. De plus si la suite(vn)est croissante, alors la suite(wn)est decroissante, et de m^eme, si la suite(vn)est decroissante, alors la suite(wn)est croissante. C. Que peut-on dire de la limite eventuelle d'une suite recurrente? Dans ce paragraphe, il est capital de preciser que l'intervalleIsur lequelfest denie est ferme! Nous avons alors la proposition suivante. Proposition 3.SoientIun intervalle ferme deR, etf:I!Rune fonction continue. Supposons que l'intervalleIest stable parf. Notons(un)la suite denie par la donnee de u

02Iet la relation de recurrenceun+1=f(un).

Dans ces conditions, si la suite(un)converge versL, alors on aL=f(L). On dit queL est un point xe def. Preuve 2.On a par denitionun+1=f(un). De plus,un2Ipar reccurence surn, et L2IpuisqueIest ferme. La fonctionfetant continue surI, on alimn!+1f(un) =f(L). D'autre part,un+1tend versLlorsquentend vers+1. Par unicite de la limite d'une suite convergente, on a doncL=f(L).

III. SYNTHESE

Lors de l'etude de suites recurrentes, il est interessant de determiner, { les points xes defs'ils existent, { les intervalles stables bornes a droite (comme par exemple ] 1;M]) ou a gauche (comme par exemple [N;1[), { les intervalles stables parfsur lesquelsfest strictement croissante ou strictement decroissante (mais c'est plus complique dans ce dernier cas). Le moyen le plus simple pour y parvenir est d'etudier la fonctionfet le tableau de ses variations. Si la fonction est decroissante, on pourra s'aider de sa courbe representative.

IV. EXERCICES

Exercice 1Etudier la suite (un) denie par la donnee deu02Ret la relation de recurrenceun+1= u2n+un. Exercice 2Etudier la suite (un) denie par la donnee deu02Ret la relation de recurrenceun+1=13 (u3n+ 1). Exercice 3Etudier la suite (un) denie par la donnee deu02Ret la relation de recurrenceun+1= 3 pu

2n+q, oupetqsont deux reels appartenants a l'intervalle ]0;1[ et veriantp+q= 1.

Exercice 4Etudier la suite (un) denie par la donnee deu02]0;1[ et la relation de recurrence u n+1=p1un. 4

Devoir maison : suites

I. Suites arithmetiques :un=u0+nr

Exercice 1Parmi les suites suivantes, determiner celles qui sont arithmetiques : a)un=2n+ 5 b)un=n33n2+ 2 c)un= (n+ 1)2n2 d)un= 7 + 2nquotesdbs_dbs7.pdfusesText_5
[PDF] suite de cauchy exemple

[PDF] montrer qu'une suite est de cauchy pdf

[PDF] suite de cauchy exercices

[PDF] rapport jury capes interne anglais 2014

[PDF] rapport jury capes interne anglais 2016

[PDF] rapport capes espagnol 2016

[PDF] rapport de jury caplp lettres histoire 2016

[PDF] rapport du jury caplp 2015

[PDF] sujet caplp 2013

[PDF] methodologie caplp lettres histoire

[PDF] vecteurs orthogonaux formule

[PDF] vecteurs orthogonaux produit scalaire

[PDF] montrer que deux vecteurs sont orthogonaux dans l'espace

[PDF] économie et démographie economie approfondie

[PDF] deux vecteurs orthogonaux produit scalaire