[PDF] Sommaire 1. Convergence des Séries Numériques





Previous PDF Next PDF



Convergence des suites

Montrer qu'une suite majorée à partir d'un certain rang est majorée. On dit qu'une suite (un) est convergente



Convergence de suites

5 nov. 2010 Soit (un) une suite convergente alors sa limite l est unique. ... petit majorant de la suite



Convergence de suites Suites récurrentes

Etudier une suite c'est savoir si elle est divergente ou convergente



Suites et raisonnements avec des ? - Correction des exercices

Exercice 2 : Montrer qu'une suite de nombres entiers relatifs convergente est stationnaire. Correction : Soit (un) une telle suite et l sa limite.



Chapitre 1 Suites réelles et complexes

Pour que cette notation ait un sens il faut montrer qu'une suite convergente admet une unique limite ! Proposition 1.2.2. Si une suite converge



Suites 1 Convergence

Montrer que toute suite convergente est bornée. Indication ?. Correction ?. Vidéo ?. [000506]. Exercice 2. Montrer qu'une suite d'entiers qui converge 



Suites 1 Convergence

n'est pas convergente. Exercice 4 Montrer qu'une suite d'entiers qui converge est stationnaire `a partir d'un certain rang. Exercice 5 Soit Hn =1+.



Sommaire 1. Convergence des Séries Numériques

Théorème : ?un une série alternée telle que la suite (





Convergence des suites numériques

Si les suites (un) et (wn) convergent vers une même limite finie l alors la suite (vn) est convergente et converge vers cette même limite l. Page 7. 14.



LIMITE DUNE SUITE

Pour montrer qu'une suite (un)n? est monotone Théorème (Convergence et caractère borné) Toute suite convergente est bornée. Démonstration. Soit (un)n?.



1 Suites convergentes - univ-amufr

n une suite de nombres r eels On dit que (u n) n est stationnaire si et seulement si 9N2N; 8n N; u n = u N: Autrement dit (u n) n est constante a partir d’un certain rang Proposition Toute suite stationnaire est convergente Preuve A faire en exercice



Convergence de suites - Université Paris Cité

B Comment montrer qu’une suite r ecurrente est monotone? 1 Directement Consid erons la suite r ecurrente d e nie par la donn ee de u 0 2R et la relation de r ecurrence u n+1 = u n + u2n pour tout entier naturel n On a alors u n+1 u n = u2 n 0 et donc cette suite est croissante! 2 En utilisant la proposition suivante Proposition 1



Feuille d'exercices o14 : Suites numériques

Exercice 3[Suite d'entiers] Montrer qu'une suite d'entier converge si et seulement si elle est stationnaire Que dire de sa limite? Exercice 4[Limites version ?] En utilisant la dé nition de la limite ( avec des ? ) montrer que l'on a les limites suivantes : 1 (ln(n)) tend vers +?; 2 (e?n) tend vers 0; 3 (1 n) tend vers 0; 4 (?



Searches related to comment montrer qu+une suite est convergente PDF

Exercice 2 Montrer que toute suite convergente est born´ee Exercice 3 Montrer que la suite (u n) n?N d´e?nie par u n = (?1)n + 1 n n’est pas convergente Exercice 4 Montrer qu’une suite d’entiers qui converge est stationnaire a partir d’un certain rang Exercice 5 Soit H n = 1+ 1 2 + + 1 n 1 En utilisant une int´egrale

Comment définir une suite convergente ?

Définition : On dit que la suite ( ) admet pour limite , si est aussi proche de que l’on veut à partir d'un certain rang et on note : lim= . Une telle suite est dite convergente. Exemple : La suite ( ) définie pour tout non nul par =1+ a pour limite 1. On a par exemple : =1+ =1,0001 =1+ =1,000001

Comment montrer qu'une suite converge ?

Utiliser plusieurs manières pour montrer qu'une suite converge. Terminale S . . Montrer quune suite relle est convergente. . Une suite qui ne converge pas est dite divergente. = . . ) tend vers +. ). = f (n). Si lim = . converge aussi vers (Thorme des gendarmes). Une suite croissante et majore est convergente (Thorme de la convergence monotone).

Comment montrer que une suite converge vers un réel ?

Montrer que si 0 ? ` < 1, la suite (un ) converge vers 0 et si ` > 1, la suite (vn ) tend vers +?. Montrer que si ` = 1, tout est possible. Correction H [005232] Exercice 1536 *** ? ) converge vers un réel `, alors ( n un ) converge et a 1. Soit u une suite de réels strictement positifs. Montrer que si la suite ( uun+1 n même limite. 2.

Comment montrer qu’une suite d’éléments converge vers a ?

Tracer les graphes des fonctions f , | f |, f+ , f? où : f+ = max ( f , 0), f? = min ( f , 0). Exercice 1414 Si a = sup A, montrer qu’il existe une suite d’éléments de A qui converge vers a. Réciproque. Exercice 1415 Soit A = Q ? ]0, 1 [ et a, b ? R+ .

  • Past day

Séries numériques8-1Sommaire

1. Convergence des Séries Numériques1

1.1. Nature d"une série numérique . . . . . .1

1.2. Séries géométriques . . . . . . . . . . . .2

1.3. Condition élémentaire de convergence .2

1.4. Suite et série des diérences . . . . . . .2

2. Opérations sur les Séries Convergentes3

2.1. Somme de 2 séries . . . . . . . . . . . . .3

2.2. Produit par un scalaire . . . . . . . . . . .3

3. Séries à termes positifs3

3.1. Séries à termes positifs . . . . . . . . . .3

3.2. Critère de comparaison . . . . . . . . . .3

3.3. Critère d"équivalence . . . . . . . . . . .4

3.4. Comparaison à une intégrale impropre .4

3.5. Règle de Riemann . . . . . . . . . . . . .5

3.6. Règle de d"Alembert . . . . . . . . . . . .54. Séries Absolument Convergentes6

4.1. Convergence absolue . . . . . . . . . . .6

4.2. Conv. des séries absolument conv. . . . .6

4.3. Une convergence absolue . . . . . . . . .6

5. Séries Numériques Réelles Alternées7

5.1. Séries alternées . . . . . . . . . . . . . .7

5.2. Critère spécial des séries alternées . . .7

6. Calcul Exact de Sommes de Séries8

6.1. Sommation en dominos . . . . . . . . . .8

6.2. Avec des séries entières ou de Fourier . .9

7. Calcul Approché9

7.1. Principe général . . . . . . . . . . . . . .9

7.2. Avec le critère spécial . . . . . . . . . . .9

7.3. Autres cas . . . . . . . . . . . . . . . . . .9

8. Compléments10

8.1. Colbert, lycée numérique . . . . . . . . .10

8.2. Les mathématiciens du chapitre . . . . .11L"objet de l"étude des séries numériques est de donner un sens à des sommes infinies de nombres réels

ou complexes et, éventuellement, de les calculer.

1. Convergence des Séries Numériques

1.1. Nature d"une série numériqueDéfinition :Soit(un)n2Nune suite d"éléments deK(K=RouC).

On appellesuite des sommes partiellesde(un)n2N, la suite(sn)n2N, avecsn=nP k=0uk.Définition : Sinon, on dit qu"ellediverge.Notation :Lasérie de terme généralunse noteX u

n.Définition :Dans le cas où la série de terme généralunconverge, la limite, notées, de la suite

sn)n2Nest appeléesommede la série et on note :s=1P n=0un.

Le reste d"ordrende la série est alors notérnet il vaut :rn=ssn.Définition :Lanatured"une série est le fait qu"elle converge ou diverge.

Étudier une série est donc simplement étudier une suite, la suite des sommes partielles de (un). Le but

de ce chapitre est de développer des techniques particulières pour étudier des séries sans nécessaire-

ment étudier la suite des sommes partielles.

Dans certains cas, on reviendra à la définition en étudiant directement la convergence de la suite des

sommes partielles.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-2Séries numériquesLa convergence d"une série ne dépend pas des premiers termes...

1.2. Exemple fondamental : les séries géométriquesThéorème :La série de terme généralxnconverge,jxj<1.

De plus, la somme est :s=1P

n=0xn=11x.Démonstration : nP k=0xk=1xn+11xpourx,1.

1xn+11xn"a de limite finie que sijxj<1, cette limite est alors11x.

D"autre part, pourx= 1,nP

k=0xk=n+1 diverge.La raison d"une suite géométrique est le coecient par lequel il faut multiplier chaque terme

pour obtenir le suivant. La somme des termes d"une série géométrique convergente est donc : " le premier terme »1" la raison ». Ceci prolonge et généralise la somme des termes d"une suite géométrique qui est : " le premier terme »" le premier terme manquant »1" la raison » Quand la série converge, il n"y pas de termes manquants... La formule est la même.

1.3. Condition nécessaire élémentaire de convergenceThéorème :

Punconverge)limn!1un= 0.Démonstration :

Punconverge)(sn)converge verss)(sn+1)converge verss

)limn!1sn+1sn= 0)limn!1un+1= 0)limn!1un= 0.Si une série converge, son terme général tend vers 0.

Dans le cas où le terme général ne tend pas vers 0, on dit que la sériediverge grossièrement.

1.4. Suite et série des diérencesThéorème :La suite(vn)converge,la sérieP(vn+1vn)converge.Démonstration :On considèreP(vn+1vn), sa suite des sommes partielles est(sn)avec

s n=n X k=0( vk+1vk)=vn+1v0

Les suites

(sn)et(vn+1)sont de même nature, il en est de même de(vn).Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

Séries numériques8-32. Opérations sur les Séries Convergentes

2.1. Somme de 2 séries

Théorème :

PunetPu0nconvergent et ont pour sommesets0

)P(un+u0n)converge et a pour somme(s+s0).

Démonstration :On applique simplement le théorème équivalent sur les suites, appliqué bien sûr

aux suites des sommes partielles.2.2. Produit par un scalaire

Théorème :

Punconverge et est de sommes;2K)P(un)converge et est de sommes.

Démonstration :On applique encore le théorème équivalent sur les suites à la suite des sommes

partielles.Il y a bien sûr une notion sous-jacente d"espace vectoriel des séries convergentes.

3. Séries à termes positifs

3.1. Séries à termes positifs

Définition :On dit qu"une sériePunest une série à termes positifs, 8n2N,un>0.

Définition :On dit qu"une sériePunest une série à termes positifs à partir d"un certain rang

, 9N2N;8n>N;un>0

3.2. Critère de comparaisonThéorème :

PunetPvndeux séries positives à partir d"un certain rang N, telles que

8n>N; un6vn

Si

Pvnconverge, alorsPunconverge.

SiPundiverge, alorsPvndiverge.Démonstration :Seule la première assertion est à montrer, l"autre est équivalente.

On le montre pour les séries positives

(N = 0).

On posesn=nP

k=0uk,s0n=nP k=0vkets0=1P n=0vn, on asn6s0n.

Les suites

(sn)et(s0n)sont croissantes et la deuxième converge. On a doncs0n6s0. Ce qui prouve que sn)est croissante majorée et donc converge. Pour le cas de séries positives à partir du rang N, on considère les sommes partiellessn=nP k=Nuk...Exemple :Etudions la convergence de+1P n=1lnnn2n:

C"est une série à termes positifs (ou plus simplement positive), on va pouvoir utiliser le critère de

comparaison.

A l"infini,

lnnn tend vers 0 et donc lnnn est une suite bornée par A:On a donc8n2N;06lnnn 6A ce qui donne8n2N;06lnnn2n6A2 nqui est le terme général d"une série géométrique de raison12

donc convergente.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-4Séries numériquesCeci prouve que

+1P n=1lnnn2nconverge.

3.3. Critère d"équivalenceThéorème :

PunetPvndeux séries positives à partir d"un certain rang N, telles que :un+1vn alorsPunetPvnsont de même nature.Démonstration :A partir d"un certain rang N, on a 0612 un6vn62un.

SiPunconverge,P2unconverge et doncPvnconverge.

SiPvnconverge,P12

unconverge et doncPunconverge.On peut remarquer que le critère d"équivalence est, par linéarité, applicable à des séries de

signe constant à partir d"un certain rang. En eet, la convergence dePunéquivaut à celle dePun.

Par ailleurs, on veillera à appliquer le critère d"équivalence auterme général:un, et non à la

série :Pun.

Exemple :Etudions la convergence de+1P

n=111+2 n.

C"est une série à termes positifs (ou plus simplement positive), on va pouvoir utiliser le critère d"équi-

valence.11+2 n+112 nqui est le terme général d"une série géométrique de raison12 ;donc convergente.

Ceci prouve que

+1P n=111+2 nconverge.

3.4. Comparaison à une intégrale impropreThéorème :Soitfune applicationpositive et décroissantesur[a;+1[,

alors la série

Pf(n)etZ

+1 a f(t)dtsont de même nature.

Et si elles convergent,

Z +1 n+1f(t) dt6+1P k=n+1f(k)6Z +1 n f(t) dtDémonstration :Remarquons d"abord que, commeZ x a f(t)dtest croissante, Z +1 a f(t)dtconverge,la suite Zp a f(t)dt! converge. On prendra pour la démonstrationa= 0. Commefdécroît sur[n;n+1],

8x2[n;n+1]; f(n+1)6f(x)6f(n)

et en intégrant, comme on peut le voir sur la figure 1, page ci-contre :f(n+1)6Z n+1 n f(t)dt6f(n). d"où en sommant pP n=1f(n)6Rp

0f(t)dt6p1P

n=0f(n), ce qui assure le résultat.On a tout intérêt à mémoriser cette figure 1 qui, associée à la relation de Chasles, fournit

démarche et résultat!

Exemple :Etudions la convergence de+1P

n=111+n2:Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

Séries numériques8-5y

x y= sin(x)n-1nn+1f(n-1) f(n) f(n+1)f(n)f(n+1)y=f(x) 0

1Figure 1 -Comparaison série-intégralefdéfinie parf(t)=11+t2est positive, décroissante sur[0;+1[etZ

+1

011+t2dtconverge et est de

même nature que la série étudiée.

Ceci prouve que

+1P n=111+n2converge.

3.5. Règle de RiemannThéorème :2R;+1P

n=11n converge,>1.Ce sont les séries de Riemann.

Démonstration :On compare cette série avecZ

+1 1 f(t)dtet le résultat est immédiat.Ceci nous donne la règle de Riemann.

Théorème :2R; un+1kn

, alors :Punconverge,>1.Démonstration :Il sut d"utiliser le critère d"équivalence et le théorème précédent.3.6. Règle de d"Alembert

Théorème :

Punune série à termes positifs non nuls (à partir d"un certain rang) telle que : lim n!1u n+1u n=l si l >1,Pundiverge grossièrement, si l <1,Punconverge,

et si l= 1, on ne peut pas conclure.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-6Séries numériquesCe théorème est séduisant à priori, mais on tombe très souvent sur le cas douteux. Il s"utilise

souvent dans le cadre des séries entières qu"on étudiera dans quelques chapitres. Avec les séries numériques, il s"utilise principalement quand on se trouve en présence de factorielles ou de termes de nature géométrique du type :an.

Démonstration :Pourl >1, la suite positive(un)croit et ne tend donc pas vers 0. On a bien la diver-

gence grossière.

Pourl <1, à partir d"un certain rang Nun+1u

n61+l2 et donc par récurrence très facile, pourn>N,un6 1+l2 nN u

N= 1+l2

nuN 1+l2 N.

Cette dernière série est géométrique, le théorème de comparaison entre séries positives fournit le

résultat.Exemple :Étudions la convergence de+1P n=1n!n n:

C"est une série à termesstrictementpositifs, on va pouvoir utiliser le critère de d"Alembert.

n+1)!( n+1)n+1n!n n=(n+1)nn( n+1)n+1=nn+1 n=1 1+1n n!+11e <1

Ceci prouve que

+1P n=1n!n nconverge.

4. Séries Absolument Convergentes

4.1. Convergence absolue d"une série numérique

Définition :Une sériePunestabsolument convergente,Pjunjest convergente. Une série convergente mais non absolument convergente est ditesemi-convergente.quotesdbs_dbs35.pdfusesText_40
[PDF] suite de cauchy exemple

[PDF] montrer qu'une suite est de cauchy pdf

[PDF] suite de cauchy exercices

[PDF] rapport jury capes interne anglais 2014

[PDF] rapport jury capes interne anglais 2016

[PDF] rapport capes espagnol 2016

[PDF] rapport de jury caplp lettres histoire 2016

[PDF] rapport du jury caplp 2015

[PDF] sujet caplp 2013

[PDF] methodologie caplp lettres histoire

[PDF] vecteurs orthogonaux formule

[PDF] vecteurs orthogonaux produit scalaire

[PDF] montrer que deux vecteurs sont orthogonaux dans l'espace

[PDF] économie et démographie economie approfondie

[PDF] deux vecteurs orthogonaux produit scalaire