[PDF] Système de coordonnées Exercice. Quelle est la surface





Previous PDF Next PDF



Géométrie dans lespace Représentation paramétrique : Exercices

Représentation paramétrique : Exercices. Corrigés en vidéo avec le cours sur jaicompris.com. Représentation paramétrique d'une droite. ABCDEFGH est un cube.



Exercices de mathématiques - Exo7

Donner un vecteur directeur la pente une équation paramétrique et une équation cartésienne des Exercice 3 Point équidistant d'une famille de droites.



representation-parametrique-droite-geometrie-espace-exos

Exercice 11 : droites coplanaires et détermination d'une équation cartésienne de plan. • Exercice 12 : représentation paramétrique d'un segment et d'une 



Chapitre 1 : Équations de la droite dans le plan

Exercice 1.5: Appliquer la même démarche avec A(-1 ; 7) et une pente de 3. Type point – point : Donner les 2 formes d'équation cartésienne de la droite passant.



ÉQUATIONS – INÉQUATIONS – SYSTÈMES

mx m x m . Exercice 15 : Etudier l'existence et le signe des racines des équations paramétriques. 1) ( ). 0.



ÉQUATIONS PARAMÉTRIQUES DES CONIQUES

Exercice 1. Déterminer les équations paramétriques de : a) l'ellipse centrée en ( ; ). h k avec l'axe focal parallèle à l'axe des abscisses. Justifier.



Chapitre 4: Géométrie analytique dans lespace

Donner deux équations paramétriques différentes de cette droite d. Exercice 4.8 : Donner une équation paramétrique de la droite :.



Feuille de TD - droites et plans

Exercice 4. Donner une représentation paramétrique puis une équation cartésienne de la droite passant par les points A et B dans les cas suivants :.



Système de coordonnées

Exercice. Quelle est la surface d'équation z = r en coordonnées cylindriques Exercice. • Donner les équations paramétriques de la courbe décrite par le.



Chapitre 4: Géométrie analytique dans lespace

Donner deux équations paramétriques différentes de cette droite d. Exercice 4.8 : Donner une équation paramétrique de la droite :.



Equations paramétriques/Inéquations EXERCICE 1 - SUNUMATHS

Equations paramétriques/Inéquations EXERCICE 1 On considère l’équation (E) suivante : m x 2 ? 2 (m ? 2) x + m ? 3 = 0 1°) Résoudre (E) pour m = 0 ; m = 2 ; 2°) Pour quelles valeurs de m (E) a-t-elle des racines ? 3°) Déterminer m pour que (E) ait deux racines x ' et x " de même signe EXERCICE 2



Chapitre 14 : Equations paramétriques et cartésiennes

Chapitre 14 : Equations paramétriques et cartésiennes Terminale S 5 SAES Guillaume III Produit scalaire dans l’espace Définition : Droite orthogonale à un plan Soit ?? et ? deux vecteurs de l’espace et trois points tels que ??= ?????? et ?= ??????



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 5 On appelle Y le projeté orthogonal du point X sur la droite (D) On a : D*****?-



Equations paramétriques du second degré - Free

Equations paramétriques du second degré 1) Somme et produit a) Dans l'équation (m-2)x2-2x(m+1)+2m+1=0 déterminez si possible les valeurs de m pour lesquelles cette équation admette 2 racines distinctes positives On précise que m est différent de 2 b) Dans l'équation (m-6)x2-4x(m-1)+m-3=0 déterminez si possible les valeurs de m pour



Comment calculer l’équation paramétrique ?

2+ x - 4 6°) Indiquer sur la figure l’ensemble des Nombres Réels solutions de l’inéquation précédente. II – [8 pts] On considère l’équation paramétrique x2+ (m + 2) x + 3(m + 2) = 0 . 1°) Déterminer suivant les valeurs de m l’existence et le nombre de solutions de cette équation.

Qu'est-ce que la courbe des équations paramétriques ?

Celles-ci sont appelées équations paramétriques et t est appelé paramètre indépendant. L'ensemble des points (x, y) obtenus en fonction de t qui varie dans un intervalle est appelé le graphique des équations paramétriques, et le graphique résultant est la courbe des équations paramétriques.

Qu'est-ce que le graphique des équations paramétriques ?

L'ensemble des points (x, y) obtenus en fonction de t qui varie dans un intervalle est appelé le graphique des équations paramétriques, et le graphique résultant est la courbe des équations paramétriques. Dans les équations paramétriques, x et y sont représentés en fonction de la variable indépendante t.

Quels sont les systèmes d’équations paramétriques?

Ceci démontre l’existence et l’unicité de (D): un système d’équations paramétriques de (d)est 8 < : x =3l y=16+2l z=4+l . Un système d’équations cartésiennes de (D) est ˆ x =3(z 4) y=16+2(z 4) ou encore (D) : ˆ x 3z+12 =0 y 2z 8 =0 .

Coordonnées

COORDONÉES POLAIRES (rappel)

En géométrie plane, le système

de coordonnées polaires est utilisé pour donner une description plus simple de certaines courbes (et surfaces).

La figure nous permet de nous

Souvenir de la relation entre coordonnées polaires et cartésiennes. ƒSi le point Pa (x, y) pour coordonnées cartésiennes et (r, ș)comme coordonnées polaires alors x= rcos șy = r sin ș r2= x2+ y2tan ș= y/x

COORDONNÉES CYLINDRIQUES

En dimension 3 il y a un système de coordonnées, appelé coordonnées cylindriques, qui :

ƒEst similaire aux coordonnées polaires.

ƒDonne une description simple de nombreux domaines (surfaces, volumes). Dans le système de coordonnées cylindriques, un point Pde -D) est représenté

Par le triplet (r, ș, z), où :

ret șsontles coordonnées polairesdelaprojection de P sur le plan xy, zestla distance orientéedu plan xyàP.

Pour convertir des coordonnées cylindriques en

cartésiennes, on utilise : x= rcos ș y= rsin ș z= z Pour convertir des cartésiennes en cylindriques, on utilise: r2= x2+ y2 tan ș= y/x z = z

COORDONNÉES CYLINDRIQUES

Exemple

a.Placer le point de coordonnéescylindriques(2, 2ʌ/3, 1)et donner sescoordonnéesrectangulaires. b.Donner les coordonnéescylindriquesdu point de coordonnéesrectangulaires(3, 3, 7).

Solution

a) Le point de cylindriquescoordonnées (2, 2ʌ/3, 1)estplacésur la figure.

Sescoordonnéesrectangulairessont

Le point a doncpour coordonnéesrectangulaires(1, , 1). 3

212cos 2 132

232sin 2 332

1 x y z S

Solution (b)

On a :

Un jeude coordonnéescylindriquesestdonc:

Un autre:

ƒCommepour les coordonnéespolaires, ily a uneinfinite de choixpossibles.

223 ( 3) 3 2

37tan 1, so 234

7 r n z T T S (3 2,7 /4, 7)(3 2, /4, 7)

Coordonnéescylindriques

Les coordonnéescylindriquessontutilesdansles problèmes oùexisteunesymétrieaxiale. On choisitalorsdes z de façonà cecoincide avec cetaxe de symétrie. ƒPar exemple, pour le cylindreà base circulaire, z, ila pour équationcartésiennex2+ y2= c2. ƒEncoordonnéescylindriques, cecylindrea comme

équation: r= c(beaucoup plus simple!).

Exercice

z= ren coordonnées cylindriques

Solution

ƒz de la surface) est la même que r(distance de ce point à z).

ƒComme ș

z. Donc, toute section horizontale de la surface par un plan z= k (k> 0) est a cercle de rayon k. Ceci suggère que la surface est coordonnées rectangulaires.

On a : z2= r2= x2+ y2, cette équation

(z2= x2+ y2équation cartésienne z.

SYSTÈME DE COORDONNÉES SPHERIQUES (3D)

Le systèmede coordonnéessphériquesestun autresystèmede coordonéesutile entroisdimensions. ƒIl simplifieenparticulierles calculstriples sur des volumes limitéspar des portions de sphèresoude cônes. Les coordonnéessphériques(ȡ, ș, ĭ) Pde sont:

ƒȡ= |OP|, ladistance deO

à P(ȡ0)

ƒș,le mêmeangle

coordonnéescylindriques.

ƒĭ, entre les vecteurszet

OP. l'angle formé par les vecteurs zet OPest appelé colatitude le plan équatorial et OP).

Notons que la première coordonnée (la

distance entre Oet P) est toujours positive, et que la colatitudeest comprise entre 0 et ,

En physique, les notations șet ĭsont

Généralement interverties, comme sur la

figure ci-contre.

La distance est souvent notée r.

REMARQUE TRÈS IMPORTANTE

Notations "physiques»

Notations "mathématiques»

COORDONNÉES SPHÈRIQUES

Utiliser un système de coordonnées sphériques peut être particulièrement utile pour résoudre des problèmes présentant origine du système. ca alors une équation très simple :

ȡ= c.

Our= c en

Le grapheéquationș= c

(= c ennotations physiques) estun demi plan verticalcontenant Oz.

équationĭ= c(ș= c en

notations physiques) représenteun demi-cône z.

COORDONNÉES SPHÈRIQUES

La relation entre coordonnéescartésiennesand sphériquesse déduitde la figure.

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

Considéronslestriangles OPQ

et, ona: z= ȡcos ĭ, r= ȡsin ĭ

ƒEt comme,

x= rcos ș, y= rsin ș

On obtientles formulesde

conversion : x= ȡsin ĭcos ș y= ȡsin ĭsin ș z= ȡcos ĭ

Avec les notations physiques, la relation

de passage aux coordonnées cartésiennes s'écritdonc :

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

Exercice :

Le point (r= 2, = ʋ/3, = ʋ/4) est donné en coordonnées schéma et calculer ses cordonnées cartésiennes.

Solution

Coordonnéescartésiennes:

1 2

3 1 3sin cos 2sin cos 23 4 2 22

3 1 3sin sin 2sin sin 23 4 2 22

cos 2cos 2 13 x x z U I T

SSU I T

SUI x y z

La formuledonnantla distance indiqueque :

r2= x2+ y2 + z2 ƒOnutilise cetteéquation pourconvertirles coordonnées cartésiennes en coordonnéesspheriques. Exercice: Le point estdonnéencoordonnées cartésiennes. Caculerdes coordonnéessphériquespour cepoint.

0,2 3, 2

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

On a :

Doncon a : r = 4, ߠ

ଷ(colatitude), ߮

Solution

Considérons M de coordonnées

sphériques (r, , ).

Le vecteur position de Mest :

OM= rur

urest le vecteur unitaire radial.

Repèrecomobile

Les coordonnées cartésiennes de Msont :

On aura donc pour ur: •‹ߠ...‘•߮ǡ•‹ߠ•‹߮ǡ...‘•ߠ

Repèrecomobile

Lvarie le point M

décrit un cercle, dans un plan parallèle à (Oxy), de rayon ݎ...‘•ߠ

Le vecteur unitaire tangent en Mà

cette courbe est noté u, il est situé dans le plan "horizontal» (x,y).

OM(et donc

à ur), puisque la norme de OMest constante

lorsque Mse déplace sur le cercle. on a : u= -sinux+ cosuy

Repèrecomobile

varie le point

Mdécrit un demi grand cercle

(méridien).

Le vecteur unitaire tangent à

cette courbe, en M, est noté u. Il est orthogonal à urpuisque, lorsque Mdécrit le demi cercle, la norme du vecteur OMest constante (ۻ۽ uest dans le plan "méridien», il est donc orthogonal à uqui est dans un plan "horizontal». Le repère comobile(M,ur,u,u) est orthonormé direct et lié à M. cartésiennes de u(à vérifier en exercice) : (coscos, cossin, -sin)

Exercice

Donner les équations paramétriques de la courbe décrite par le point Mde coordonnées sphériques (r, , ) lorsque varie (ret restant fixés). Calculer, par dérivation, le vecteur tangent à la courbe, en déduire les coordonnées cartésiennes de u Donner les équations paramétriques de la courbe décrite par le point Mde coordonnées sphériques (r, , ) lorsque varie (ret restant fixés). Calculer les coordonnées cartésiennes de ude deux façons différentes. Les équations paramétriques sont, bien sûr : On obtient les coordonnées du vecteur tangent Tpar dérivation des coordonnées de Mpar rapport à :

Solution

TT||2= r2sin2(sin2+ cos2) = r2sin2, ||T|| = rsin( sin est positif car אߠ-ǡߨ u= (-sin, cos, 0)

Les équations paramètiquessont :

On obtient les coordonnées du vecteur tangent Tpar dérivation des coordonnées de Mpar rapport à : ||T||2= r2cos2(cos2sin2) + r2sin2= r2 (cos2+ sin2) = r2 Donc ||T|| = r, les coordonnées cartésiennes de u= T/ ||T|| sont : (coscos, cossin, -sin) Remarque: comme on le voit sur les coordonnées de ur, urest une fonction des deux variables et phi. au chapitre suivant. On peut déjà observer que les calculs précédents montrent que le vecteur dérivé de urpar rapport à (à fixé) est u, et que le vecteur dérivé de urpar rapport à (à fixé) est sinu.quotesdbs_dbs16.pdfusesText_22
[PDF] bowlby attachement livre

[PDF] théorie de l'attachement adulte

[PDF] rapport jury capes interne anglais 2013

[PDF] représentation paramétrique d'un segment

[PDF] equation parametrique droite dans le plan

[PDF] rapport jury agrégation interne espagnol 2014

[PDF] rapport jury agrégation externe lettres modernes 2003

[PDF] rapport jury agrégation externe lettres modernes 2007

[PDF] rapport jury agrégation externe lettres modernes 2004

[PDF] rapport jury agrégation lettres modernes 2004

[PDF] exercices figures planes cm1

[PDF] séquence sur les triangles cm1

[PDF] décrire et reproduire des figures cm1 exercices

[PDF] tri de triangles ce2

[PDF] jeu du portrait polygones cm1