[PDF] [PDF] Les orbites elliptiques des planètes - Le site du CRAL (UMR5574)





Previous PDF Next PDF



Mouvement elliptique dun satellite

Mouvement elliptique d'un satellite. Notations : Les vecteurs sont notés en gras ? = d?/dt ?' = d?/dt r' = dr/dt r'' = d²r/dt² i' = di/dt = ? j.



Cours de mécanique 2 - M22-Forces centrales

3.3 Mouvements possibles . 4.3 Trajectoire elliptique et lois de Kepler . ... 3 Mouvement général d'un point M soumis à une force centrale conservative.



II.6 Etude du mouvement elliptique

compte du mouvement de M sur cette trajectoire. Dans ce nouveau chapitre on consid`ere le mouvement elliptique (h < 0) et on s'attache `a déterminer le 



Comparaison entre le mouvement de Képler et le mouvement

matiques et dynamiques du mouvement elliptique de Képler et du Figure 1 : Orbite elliptique des mouvements képlérien (? = angle AFM) et harmonique.



Mémoire sur le mouvement vibratoire dune membrane de forme

Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. Journal de mathématiques pures et appliquées 2e série tome 13 (1868)



Chapitre 12 : Mouvement des planètes et des satellites

Enoncer les lois de Kepler et les appliquer à une trajectoire circulaire ou elliptique. (2). Définir un mouvement circulaire uniforme et donner les 



M05 Mouvements dans un champ de force centrale conservatif

cas les constantes du mouvement (moment cinétique et énergie mécanique) pour exprimer l'énergie de la trajectoire elliptique en fonction du demi-grand.



Chapitre 8 :M ouvement dans un champ newtonien

Le mouvement circulaire est un cas particulier du mouvement elliptique. On a alors. 0. > k . v ? ?.



M7.1. Mouvement elliptique dun satellite artificiel. Enoncé. Un

M7.1. Mouvement elliptique d'un satellite artificiel. Enoncé. Un satellite artificiel de la Terre a une trajectoire elliptique son apogée est à l'altitude 



Exercices de Mécanique

2) Le vecteur accélération d'un point M en mouvement rectiligne accéléré est : Ex-M1.7 Mouvement elliptique (§ Cf Cours M7).



[PDF] Mouvement elliptique dun satellite

Mouvement elliptique d'un satellite Notations : Les vecteurs sont notés en gras ? = d?/dt ?' = d?/dt r' = dr/dt r'' = d²r/dt² i' = di/dt = ? j



[PDF] II6 Etude du mouvement elliptique - SYRTE

Dans ce nouveau chapitre on consid`ere le mouvement elliptique (h < 0) et on s'attache `a déterminer le mouvement du point M autour de A ce dernier occupant 



[PDF] Les orbites elliptiques des planètes - Le site du CRAL (UMR5574)

15 nov 2016 · Le fichier orbite_terre_construction ppt (ou orbite_terre_construction pdf ) contient toutes les explications et formules pour avancer pas à pas 



[PDF] M71 Mouvement elliptique dun satellite artificiel - KholaWeb

Un satellite artificiel de la Terre a une trajectoire elliptique son apogée est à l'altitude hA = 350 km et son périgée à l'altitude hP = 200 km On note RT le 



Formules pour mouvement elliptique - De Gruyter

Au premier exercice nous établissons un ensemble de formules permet- tant de caractériser un mouvement elliptique en fonction des rayons au péricentre et à l' 



[PDF] Trajectoires elliptiques

À titre d'exemple revenons aux mouvements des centres des planètes décrits dans le référentiel héliocentrique L'excentricité de l'orbite terrestre est e = 0 



[PDF] Cours de mécanique 2 - M22-Forces centrales - Physagreg

4 3 Trajectoire elliptique et lois de Kepler 3 Mouvement général d'un point M soumis à une force centrale conservative



[PDF] Exercices : MOUVEMENTS ELLIPTIQUES ET CIRCULAIRES

Chapitre 4 – Mouvements elliptiques et circulaires Exercices 1/5 Exercice 1 : Connaître la loi des orbites Pour représenter sur un schéma l'orbite de 



[PDF] Mécanique céleste:´Equations du mouvement - Astrosurf

Le rayon vecteur du mouvement est donné par l'équation (1) mouvement elliptique s'écrit pour le rayon vecteur et la vitesse: r =a(1 ? e2) 1 + e cos?



[PDF] Comparaison entre le mouvement de Képler et le mouvement

Figure 1 : Orbite elliptique des mouvements képlérien (? = angle AFM) et harmonique (? = angle AOM) Dans le mouvement képlérien l'un des foyers F par 

  • C'est quoi un mouvement elliptique ?

    ? elliptique
    Se dit d'un mouvement à accélération centrale , de centre O, dont la norme est proportionnelle à la distance à O, dans le cas où et ne sont pas colinéaires. (M0 est la position initiale du point mobile et V0 est sa vitesse initiale.)
  • Pourquoi la rotation de la Terre est elliptique ?

    Cela veut dire qu'il y a un mécanisme de régulation tendant à "circulariser" les orbites elliptiques. En fait, les planètes n'ont pas été lancées au hasard mais se sont formées à partir d'un disque dont on peut montrer qu'il tend naturellement par frottements internes à adopter un mouvement quasi-circulaire.
  • Comment trouver l'équation d'une ellipse ?

    Si (X, Y ) est sur le cercle unité on a X2 +Y 2 = 1, et u(?) est donné par l'équation (?x+?y)2 +(?x+?y)2 = 1. Comme le premier membre est une forme quadratique définie positive, il s'agit bien d'une ellipse.
  • Le demi grand axe de l'orbite est a = (R + r) / 2 = (150 + 58) / 2 = 104 106 km. L'excentricité est e = (R - r) / (R + r) = (150 - 58) / (150 + 58) = 92 / 208 = 0,442.
Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

1/14

Astrogebra

Les orbites elliptiques des planètes

L'ellipse orbite des planètes sous Geogebra.

Contexte historique et rappel.La

cosmologie des astronomes éclairés de la fin du XVI siècleèmeconvaincu de l' héliocentrisme du Système solaire conduit Kepler (1571-1630)à ch ercher dans l'ellipse la clé des orbites des planètes. Il établit trois loisfo ndamentales sur leurs trajectoires.Le s deux premières lois sont publiées en 1609, la troisième en 1618. C'estl'abouti ssement d'un gigantesque travail de réflexion de tâtonnements et decalculs e t sera parachevé par la synthèse de la gravité de Newton qui permet deles retrouver par la dynamique d'un corps sous l'action d'une force centrale.

1 loièreCh

aque planète décrit dans le sens direct une ellipse dont le Soleil occupe un des foyers.L'équation de c

ette ellipse peut être mise sous forme analytique en coordonnées polaires oucar tésiennes (voir Annexe 1) Ra

ppel de la définition géométrique une ellipse : lieu géométrique d'un point dont la somme desdis

tances à deux autres points appelés foyers est constante.

2 loi ou loi des airesèmeUne ligne joig

nant une planète au soleil balaye des aireség ales en des temps égaux.

3 loièmeLe ca

rré de la période sidérale P d'une planète est directement proportionnel au cube dude mi-grand axe a de la trajectoire elliptique de la planète : suivant les unités choisies.

Voir l'Annexe 1 sur l'ellipse.

Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

2/14

Première partie

L'orbite képlérienne d'une planète

IntroductionSi l'Univers

ne comportait qu'une étoile et une planète, leurs orbites seraient des ellipses, dans unplan fixe, ayant l'un

des foyers pour barycentre du système, et leurs mouvements suivraient les lois deKe pler.Dans le

Système solaire, les orbites des planètes sont pratiquement des ellipses. Les perturbationsréciproque

s et leur non sphéricité induisent de lents et faibles changements de leurs orientations et deleurs par

amètres orbitaux.Po

ur l'observateur astronome, le référentiel naturel du ciel est le référentiel équatorial qui estadapté

à la rotation diurne. Ce référentiel n'est pas stable, il subit aussi différents variationsd'a

mplitudes diverses : la précession, la nutation, etc.Mai s pour suivre les planètes dans leurs cours et calculer leursép hémérides, il est plus aisé de se rattacher à un référentiel adapté ausy stème solaire qui a la forme d'un disque. Pour fixer avec précision cerep ère, il a été choisi, depuis très longtemps, le référentiel écliptique,pla n de l'orbite de la Terre autour du Soleil.Co mme le plan équatorial coupe la sphère céleste suivant le cerclecél este équatorial, le plan écliptique coupe la sphère céleste suivant lecer cle écliptique. C'est sur ce cercle que le Soleil semble parcourir enun an la zone des constellations du Zodiaque.Le référentiel écliptique a pour plan de référence le plan del'é cliptique, et comme direction origine l'un des deux pointsinterse ction du cercle équatorial et du cercle écliptique, celui où, dansso n parcours annuel, le Soleil passe de l'hémisphère sud à l'hémisphèreno

rd. Il est appelé point vernal et noté par la lettre grecque g parce qu'elle ressemble au signe du Bélier,co

nstellation où ce point se trouvait il y a bien longtemps.Le s coordonnées utilisées dans ce système sont :-

l : la longitude écliptique variant de 0 à 360° dans le sens direct à partir du point g,-

b : la latitude écliptique, de 0 à +/-90° à partir du plan écliptique.Ce

référentiel peut être géocentrique, héliocentrique, ou encore planétocentrique.Chez les astr

ométristes, ce référentiel est rattaché à un référentiel plus stable, celui défini par l'IAUda

ns le cadre de l'International Celestial Reference System, ICRS : l'International Celestial ReferenceFrame

ICRF (voir pour l'ICRS et l'ICRF l'Annexe 2 en fin de document).Si pour l'or

bite de la Terre, le référentiel écliptique est bien adapté, il n'en est pas de même pourles autr

es planètes qui ont leurs plans orbitaux inclinés, certes peu, par rapport au plan de l'écliptique(voir ta

bleau en Annexe 5).De

plus le plan de l'écliptique subit des petites variations dues aux perturbations des autresplanètes (

voir TD Variations du plan de l'écliptique). Il existe un plan plus stable dans le systèmeso

laire, le plan invariable, basé sur la conservation du moment angulaire de tout le Système solaire(vo

ir TD sur le Plan invariable).Mais, par c ommodité avec la multitude de travaux antérieurs, le plan de référence actuellementuti lisé dans le Système solaire est le plan de l'écliptique.Pour pouvoir définir avec précision l'orbite d'une planète, il faut connaître un ensemble depa

ramètres tous nécessaires pour orienter celle-ci, paramètres obtenus par l'observation et le calcul.

Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

3/14L'

orbite d'une planète du système solaireest déterminée par sept éléments :•

P la Période sidérale de révolution,0

• t l'instant de la planète au périhélie• a le demi-grand axe,• e l'excentricité,• i l'inclinaison de son plan,•

Ù la longitude du noeud ascendant,•

ù l'argument du périhélie,

On trouve aussi le faux angle•

l'élongation du périhélie j = Ù + ù.Le s caractéristiques des orbites de planètesse trouvent en Annexe 4 en fin de document. Construire l'orbite de la Terre et voir les lois de KeplerUne orbite képl érienne est une orbite qui suit les trois lois de Kepler rappelées en introduction.Av

ec les paramètres des planètes et en utilisant les équations de leurs mouvements il va êtrepo

ssible pour une planète (la Terre ou une autre) de- tr acer son orbite (1 loi)ère- le s placer en fonction du temps sur son orbite et l'animer- vi sualiser et vérifier la loi de aires (2 loi)ème- vérifier la 3 loième- v isualiser la vitesse et observer ses variationsPo

ur n'avoir pas tout à chercher et mettre en mémoire les données des paramètres des planètes, lefi

chier Geogebra data_syssol.ggb contient les valeurs de bases qui sont nécessaires (fichier àtél

écharger sur la page des Ateliers du mercredi).Il c

ontient dans la partie Tableur, l'ensemble des caractéristiques des planètes du Système solaire,et d

ans la partie Algèbre quelques constante : G la constante de la gravitation, ua l'unité astronomique.Af

in de ne pas s'égarer dans les unités, sauf pour les tracés des orbites faits à l'échelle de l'unitéastronomique, nous utili

serons le système international d'unités MKS.Représenter toutes les planètes est un important travail, nous nous contenterons, dans le tempsim parti pour un TD, de construire l'orbite de la Terre, planète bien connue.

1 - Voir et animer la première loi de KeplerPo

ur construire et voir une planète évoluer en fonction du temps sur son orbite, il faut établir,co

mme l'a fait Kepler puis Newton, les équations qui vont relier le temps t, le rayon vecteur r et l'angledu

rayon vecteur v.Il f aut résoudre l'équation de Kepler u - e sin u = M (1) ou M est l'anomalie moyenne, u l'anomalie excentrique.L' anomalie moyenne est l'angle que fait un corps fictif quitournerai t sur une orbite circulaire de rayon a avec une périodeP , a et P identiques aux valeurs de la planète. o u 3 600

M(t) = --- (t - t)

P 2

ð0

M(t) = --- (t - t)

P0 t instant du passage au périhélie. Paramètres d'une orbite képlérienne d'une planète. Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

4/14L'

équation de Kepler (1) n'est pas résolvable analytiquement. Elle peut l'être par itération en01

prenant une valeur de départ u

égale à M, ce qui donne u

10 u = e sin u + M2 puis u , 21 u = e sin u + M etc. Ce tte itération, converge très rapidement sauf pour de fortes excentricités.Elle peut aus si être résolue graphiquement en remarquant qu'en l'écrivant u - M = e sin u12 ceci est l'intersection d'une droite f (u) = u - M et d'une sinusoïde f (u) = e sin u.L' abscisse du point d'intersection est la valeur u cherchée en radians.C' est la méthode que l'on emploiera avec Geogebra en se servant de la commande Intersectionde courbes et en prenant l'abscisse du point créé.Po

ur passer de l'anomalie excentrique u à l'anomalie vraie v (voir figure), on se sert de l'équation

Il n 'y a plus qu'à calculer le rayon vecteur r en fonction de v de la 1 loi de Keplerère

2 - Voir la loi des airesPo

ur vérifier la Loi des aires (2 loi), il faut exprimer la surface balayée par le rayon vecteur enèmefo

nction du temps. Cette surface doit croître linéairement avec le temps.Si

ce calcul peut être fait analytiquement en intégrant la surface balayée par le rayon vecteur, il seraplu

s aisée de faire calculer la surface par la commande Secteur de Géogebra et visualiser ses variationsen

portant sur une période, dans un graphique, la surface balayée en fonction de la fraction de périodeéco

ulée (phase).

3 - La 3 loièmeLa

troisième loi de Képler se déduit par le calcul de la mécanique de Newton en partant d'une forcecen

trale. Son expression en fonction de tous les paramètres est : Si

l'on néglige la masse de la planète par rapport à celle du Soleil, on obtient bien une constante

pour le rapport pour toutes les planètes.En prenant l'expression logarithmique, apparaît une relation linéaire entre log a et log P. So

us Geogebra, avec les valeurs des paramètres des planètes données prises dans la partie tableur,vé

rifier la constance du rapport , aux imprécisions des données, en portant les couples de points (loga

, log P), et vérifier leur alignement. Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

5/14

4 - Visualisation de la vitesse orbitale

Vitesse tangentielleIl r

este à visualiser le vecteur vitesse qui, dans ses variations est associé à la loi des aires.Le

développement des équations de Kepler permet de calculer le module de la vitesse V en fonctionde

son anomalie vraie v ou en fonction de son rayon vecteur r, ces deux formules étant équivalentes avec et Ce

s formules ne donnent que le module de la vitesse. Pour tracer le vecteur vitesse, il faut aussila direc

tion ou tangente à l'ellipse en P, donnée par son vecteur unitaire.Po

ur calculer l'orientation de ce vecteur vitesse, nous partons de l'équation de l'ellipse sous saform

e cartésienne, l'origine étant en son centre. En différentiant l'équation, on obtient la valeur de la dérivée qui estla pente de l a tangente à la courbe x et y sont calculés en se servant de r rayon vecteur et v anomalie vraie x = r cos(v) + c y = r sin(v)On obtient l'angle d'inclinaison á de la tangente en prenant á = arctan(y'), mais avec uneind

étermination à 180° près. Il faudra faire un test sur l'ordonnée du point pour la lever.Le

s composantes du vecteur unitaire de la tangente sont les cosinus et sinus de l'angle á.En portant le vecteur vitesse sur le graphique, il faudra lui appliquer un coefficient d'échelle(1/

100) pour s'adapter à la fenêtre du tracé.ème

Remarque : les possibilités de Geogebra permettent de trouver la direction du vecteur vitesse entra

çant la droite tangente au point T et en prenant son vecteur unitaire, mais avec la mêmeind

étermination à 180° près.Le

s variations du module de la vitesse pourront être visualisées enport ant dans le graphique de la 2 loi. Le point représentatif aura pourèmeab scisse la fraction de période (phase) et pour ordonnée la vitesse(no rmalisée à la vitesse maximale au périhélie).

Vitesse radialeEn

projetant le vecteur vitesse sur le rayon vecteur, on fait apparaître levecteur vi tesse radiale que l'on tracera. Re marquer avec la progression du temps, ses changements de sens et ses maxima et minimad'a mplitude. Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

6/14

Visualisation et construction sous GeogebraLe

fichier orbite_terre_construction.ppt (ou orbite_terre_construction.pdf) contient toutes lesexplicat ions et formules pour avancer pas à pas dans la construction des graphiques du TD sousGe ogebra.Voici les pr incipales parties de cette construction.La

ncer Geogebra , charger le fichier de données data_syssol.ggb. Ce fichier est téléchargeablesu

r la page de Formation Continue (FC) du CRAL-Observatoire de Lyon :

1 - Précisions de départLe

plan du graphique sera le plan de l'orbite, l'écliptique pour la Terre.L' axe des abscisses sera le grand axe de l'orbite.Pour être ac tuel, la plage de temps utilisée sera de deux ans, du 1/01/2017 et 1/01/2019.1-1 - Données

Le fichier data_syssol.pdf contient les caractéristiques des planètes et quelques constantes : massedu

Soleil, constante de la Gravitation, distance de l'unité astronomique.Ap arté sur les données trouvées sur le Web

Les périodes sidérales de révolution des planètes sont données soit en jours, soit en années.Le

rapport entre ses deux valeurs est l'année sidérale. En collectant sur les divers sites cesva

leurs en années et en jours, il s'avère que la valeur de ce rapport peut varier de plusieursdix

ièmes de jour pour une valeur fixée avec plus de 5 décimales. Pour la fiabilité des calculs utiliser la valeur reconnue actuellement par l'IAU 365.256363jou rs ainsi que pour toutes les autres données des planètes.1-2 - Le curse ur temps1-3 - L'affichage de la date et l'heure1-4 - Données de l'orbite

Position en longitude origine

Le demi-grand axe

L'excentricité variable

Exercice - Variation de l'excentricité par curseur

L'excentricité de la Terre est prise pour référence et l'on veut en faisant varier un curseur deT

0 à 10, faire varier l'excentricité de 0 à 1. Le curseur sur 1, e vaudra e

Variation de e en fonction du curseurcurseur

0110e
xcentricité0T e 1

Voir Annexe 3 pour les explications

Création de g_e et e

2 - Résolution de l'équation de Kepler2-1 - L'anomalie moyenne

2-2 - L'anomalie excentrique et l'anomalie vraie2-3 - Le rayon vec teur

3 - Construction de l'orbite3-1

- Tracé de l'ellipse de l'orbite3-2 - La planète animée Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

7/14

4 - La loi des aires4-1

- Voir la loi des aires4-2 - Calcul de l'aire balayée4-3 - Graphique du tracé4-4 - Point représentatif de l'aire4-5 - Finit ion graphique

5 - Troisième loi, représentation graphiquePo

ur cette représentation, la fenêtre Graphique 2 de Geogebra sera utilisée.5-1 - Expressi on de la 3 loième5-2 - Représent ation graphique

6 - Voir le vecteur vitesse6-1

- Module de la vitesse 6-2 - Direction et vecteur unitaire6-3 - Visualisation vecteur vitesse

Positionner en T le vecteur vitesse en translatant le vecteur unitaire de la vitesse multiplié par sonmodule (à un facteur d'échel

le). Translation : vecteur CT.6-4 - Variation et visualisation du module vecteur vitesse Pour voir les variations d'amplitude du vecteur vitesse, on ajoute un point figuratif dans legra phique Loi des aires.m ax

Son abscisse est celle du point figuratif de l'aire balayée et son ordonnée le rapport de V / V

,am plitude maximale au périhélie. o

ù r = a(1-e)

6-5 - Vitesse radiale

Construire la projection du vecteur vitesse sur la direction Soleil-Terre pour en voir l'amplitudeet l

e sens.6-6 - Représent ation

7 - Vision 3D

Biblioweb

Adresses web pour les éléments des planètesht tp://ssd.jpl.nasa.gov/?planets#elemht Les lois de KeplerSur la page FC du CRAL - Observatoire de

Lyonht

ur les nostalgiques, mais très complet : Danjon Astronomie Générale, Blanchard, 1959. Il estco

nsultable à l'Observatoire. Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

8/14

Annexe 1

De l'ellipseLa

définition géométrique est des plus simple à mettre en oeuvre :Li

eu géométrique d'un point dont la somme des distances à deux autres points appelés foyers estco

nstante.L' équation de celle-ci peut être mise sous forme analytique enco ordonnées polaires ou cartésiennes ou

Paramètres d'une ellipseAA'

grand axe et BB' petit axea demi-grand axe (longueur)b demi-petit axe (longueur)c distance centre - foyere excentricité = c/a

Pour se rattacher à l'Astronomie :en

F est le Soleil (en fait barycentre)P

est la planète sur son orbite elliptiqueA périhélie, A' aphéliee excentricité de l'orbite.

Développement géométrique

Ellipse : de la définition ci-dessus :

F et F' sont les foyers de l'ellipse.On

définit : a = OA = OA' : demi-grand axe b = OB = OB' : demi-petit axe c = OF = OF'So it k constante, la somme des deux longueurs des segments PF et PF'.On a :2 a = kEn effet, le point P étant en A, on écrit

On pose,

c/a = e : excentricité ou ellipticité.Da ns le triangle FOB, FB = a, OB = b, OF = c Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

9/14E quation de l'ellipseI -

Coordonnées polairesUn

point P est repéré à partir de l'origine F par sa distance r (FP) et l'angle è (xFP)Da ns le triangle F'HP, on exprime r' en fonction de r et è

En développant et

simplifiant

En reEgroupant les terrmes en r

II - Coordonnées cartésiennes

On part de l'équation en coordonnées polaires : et de la relation dans le triangle rectangle FHP

Elimination de è

De la relation entre a, b et e l'ellipticité, on écrit Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

10/14

En simplifiant

En élevant au carré les deux membres et en remplaçant r par sa première expression simplifivation et regroupement

Mais l'on sait que

en divisant par b 2 Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

11/14

Annexe 2

(extrait de Wikipedia) Le Système International de Référence Céleste ICRS Le

Système International de Référence Céleste (ICRS) est le système de référence standart célestecourant adopt

é par l'Union Astronomique Internationale (IAU). Son origine est au barycentre duSy

stème solaire, avec des axes qui sont censés être "fixés" par rapport à l'espace. Les coordonnéesICRS sont approximativement les m

êmes que les coordonnées équatoriales : le pôle moyen à J2000.0se p

lace à 17.3 +/- mas dans la direction 12h et 5.1+/-0.2 mas dans la direction 18h. L'équinoxe moyende J2000.0 est déca

lé de l'ascension droite ICRS par 78+/-10 mas (rotation directe autour de l'axepo laire).L'

ICRS est basé sur des centaines de radio sources extra-galactiques, principalement des quasars,dis

tribuées sur tout le ciel entier. Parce qu'elles sont si distantes, elles sont apparemment stationnairespour notre technologie actuell

e, quoique leurs positions peuvent être mesurées avec la plus grandepré

cision par Very Long Baseline interferometry (VLBI : interférométrie à très longue base). Lespositions de

la plupart sont connues à mieux que 0.001 arc seconde, qui est l'ordre de magnitude la pluspré cise que celles des meilleurs instruments optiques. Le Repère de Référence Céleste International

The International Celestial Reference Frame

ICRFLe

Repère de Référence Céleste International (ICRF) est un repère quasi-inertiel de référencecen

tré au barycentre du Système solaire, défini par les positions mesurées de 212 sources extragala

ctiques (principalement des quasars). Quoique la Relativité générale implique qu'il n'y a pas devrais re

pères inertiels autour des corps gravitant, l'ICRF est important parce que, définitivement, il nemontre pas de

mouvements angulaires mesurables puisque les sources utilisées pour définir l'ICRF sonttrès él

oignées. L'ICRF est maintenant le repère de référence standard utilisé pour définir les positionsdes planète

s (la Terre incluse) et les autres objets astronomiques. Il a été adopté par l'UnionAstro nomique Internationale depuis le 1 janvier 1998. L'ICRF a un bruit plancher d'environ 250erm

icro arcsecondes (ìas) et sa stabilité axiale approximativement de 20 ìas ; ceci était l'améliorationd'u

n ordre de magnitude sur le précédent, le Cinquième Catalogue Fondamental (FK5).L'

ICRF contient aussi les positions de 396 sources additionnelles non utilisées pour la référence.Le

s positions de ces sources ont été ajustées dans l'extension plus tardive du catalogue.Il faut noter

qu'en astrométrie, un repère de référence est la réalisation physique d'un système deréf

érence, c'est-à-dire le repère de référence où sont reporté les coordonnées les points de données.L'ICRF est la réa

lisation de l'International Celestial Reference (ICRS), et convient avec l'orientationdu repère du Cinqui

ème Catalogue Fondamental (Fith Fundamental Catalog FK5) "J2000.0" à mieuxqu e la précision de ce dernier catalogue.En

2009, une mise à jour était faite : le repère de référence ICRF2. L'ICRF2 est défini par lespositions de

295 sources radio compact (97 sont déjà définies dans l'ICRF1). Incluant des sources nondéf

inies, il comprend 3414 sources mesurées en utilisant la méthode d'interférométrie à très longuebase. L'

ICRF2 a un bruit plancher approximatif de 40 ìas et une stabilité axiale approximative 10 ìas.La maintenance de l'ICRF2 sera fait

e par un ensemble de 295 sources qui ont spécialement une bonnestabili

té de position et une structure spatiale non ambiguë. L'ICRF primitif est référencé maintenantcomm

e l'ICRF1. Astro Géogébra - Orbites elliptiques - Phm -

Obs. Lyon 2016/11/15 orbite_terre.wpd)

12/14

Annexe 3

Une variable asservie à un curseur

passant par 3 valeurs déterminées (Avec Geogebra)e

A l'aide d'un curseur g

(g comme grandissement) faire varier l'excentricité e de l'orbite d'unepla

nète avec un facteur multiplicatif pour que e aille de 0 à 1 et lorsque le curseur va de 0 à 10 et queeT

pour g = 1, e = e

Variation de e en fonction du curseure

curseur g

0110ex

centricité0T e1

Une façon simple est

de faire passer une courbe du 2 degré ou parabole par les trois couples deèmeT points (0,0), (1, e ), (10,1).Ce qui peut s'écrire y = a x + b x + c2En remplaçant x par les trois valeurs possibles11

1y = a x + b x + c 222

2y = a x + b x + c 233

3y = a x + b x + c 2a.

0 + b.0 + c =

c = 0T a.1 + b.1 +c = a + b + c = ea.

100 + b.10 + c = 100 a + 10 b + c = 1La

résolution est simple, soit directement parsu bstitutions, soit de façon matricielle.La form e matricielle est plus élégante. Elle est plusfa cile à adapter à tout autre polynôme de degré plus élevé. En m ultipliant à droite par la matrice inverse, on obtient le vecteur des coefficients. Da ns notre cas simple c = 0T b = (100 e -1)/90T a = e - b

Ecriture GeogebraCo

nstruction du curseur : g_e = Curseur[0, 10, 0.1 ]T Coeff. auxiliaires (D4 valeur de e prise dans la partie tableur) : c1 = (100 * D4 - 1) / 90 c2 = D4 - c1Formule de calcul de la va leur de l'excentricité e = c1 * g_e^2 + c2 * g_e

Astro Géogébra - Orbites elliptiques - Phm - Obs. Lyon 2016/11/15 orbite_terre.wpd) 13/13Annexe 4

Caractéristiques des planètes

P P a e i L long.peri. long.node.

(jours) (années) UA rad. deg. deg. deg. deg. ua/s. ua/s. deg./s. deg./s. deg/s. deg./s Mercure 87.9707897 0.24084670 0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 48.33076593

0.00000037 0.00001906 -0.00594749 149472.67411175 0.16047689 -0.12534081

Vénus 224.7047137 0.61519726 0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 76.67984255

0.00000390 -0.00004107 -0.00078890 58517.81538729 0.00268329 -0.27769418

Terre Lune 365.2627185 1.00001740 1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.00000000

0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.00000000

Mars 686.9915538 1.88084760 1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 49.55953891quotesdbs_dbs16.pdfusesText_22
[PDF] 50 activités autour des carnets de voyage ? l'école

[PDF] récit de voyage cm2

[PDF] carnet de voyage imaginaire cycle 3

[PDF] projet carnet de voyage cycle 3

[PDF] mouvement d un projectile dans un champ de pesanteur uniforme exercices

[PDF] mouvement d un projectile dans un champ de pesanteur uniforme tp

[PDF] projectile physique pdf

[PDF] compte rendu tp physique 1ere s

[PDF] lire un paysage cycle 3

[PDF] calcul d'antécédent

[PDF] flexion et extension du pied

[PDF] exercices sur le mouvement d'une particule chargée dans un champ magnétique uniforme

[PDF] en faite non

[PDF] en fait au fait difference

[PDF] en faite orthographe