[PDF] [PDF] Quelques rappels sur les intervalles de confiance - Cedric-Cnam





Previous PDF Next PDF



Quelques rappels sur les intervalles de confiance

si ? = 10% le fractile d'ordre 0



Estimations et intervalles de confiance

mations : intervalle de confiance d'une proportion d'une moyenne si la variance est connue ou non



STATISTIQUE : ESTIMATION

suit sensiblement une loi normale centrée réduite. 4.b. Intervalle de confiance du rapport de deux variances. Théorème 13. Un intervalle de confiance au 



Cours de Statistiques inférentielles

On note ? la fonction de répartition de la loi normale centrée réduite : L'intervalle de confiance pour la moyenne d'une population de variance ?2 ...



Chapitre 5 : Estimation

où c = 1 ? ? s'appelle la confiance et ? s'appelle le risque (de se tromper Intervalles pour la loi normale centrée réduite. Soit Z ? N(0 1).



Statistique pour ingénieur

d'intervalles de confiance ou des tests statistiques à poser fréquemment P = 1 ? ? ou Table no2.1— Fractiles de la loi normale centrée réduite .



TABLE DE LA LOI NORMALE CENTREE REDUITE

TABLE DE LA LOI NORMALE CENTREE REDUITE. Lecture de la table: Pour z=1.24 (intersection de la ligne 1.2 et de la colonne 0.04).



Statistique inférentielle Intervalles de confiance

Intervalles de confiance. Rappels sur la loi normale Soit ? ? (0 1)



Ch. 5 : Echantillonnage estimation

avec ?(a) = p(Z<a) o`u Z suit la loi normale centrée réduite. Rappelons ?(a) est le nombre donné Estimation d'une moyenne µ par intervalle de confiance.



Estimation et tests statistiques TD 5. Solutions

c) Donner un intervalle de confiance au niveau 95% puis 98%



[PDF] Quelques rappels sur les intervalles de confiance - Cedric-Cnam

Quand la variance est connue l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi normale s'écrit donc au niveau 1?? sous la forme 



[PDF] TABLE DE LA LOI NORMALE CENTREE REDUITE

TABLE DE LA LOI NORMALE CENTREE REDUITE Lecture de la table: Pour z=1 24 (intersection de la ligne 1 2 et de la colonne 0 04)



[PDF] Table de la loi normale

La table qui appara?t `a la page suivante nous permet de trouver la surface `a gauche d'une valeur donnée sous la densité de la loi normale de moyenne 0 et 



[PDF] Estimation

Intervalles pour la loi normale centrée réduite Soit Z ? N(0 1) Challenge : Trouver I? centré en 0 tel que P[Z ? I?] = 1 ? ? Propriété de la loi 



[PDF] Estimations et intervalles de confiance

mations : intervalle de confiance d'une proportion d'une moyenne si la variance est connue ou non loi normale centrée réduite) On obtient alors



[PDF] : tdr27 ————— Intervalles de Confiance —————

Loi Normale Centrée Réduite valeurs quantiles Logiciel R version 2 6 1 (2007-11-26) – tdr27 rnw – Page 2/7 – Compilé le 2008-01-27



[PDF] TABLES DE PROBABILIT?S ET STATISTIQUE

La table suivante donne l'intervalle de confiance ??min?k ???max?k ??× du param`etre ? d'une loi de de Poisson pour une observation unique égale `a k ? ? La 



[PDF] Intervalles de confiance

d'une loi normale centrée réduite alors [Fn ? u? ?n?Fn(1 ? Fn); Fn + u? ?n?Fn(1 ? Fn)] est un intervalle de confiance approximativement de niveau 



[PDF] Loi Normale centrée réduite

Loi Normale centrée réduite Probabilité de trouver une valeur inférieure à x Loi du 2 ? Valeur de 2 ? ayant la probabilité P d'être dépassée



[PDF] Estimation par intervalle de confiance

Intervalle de confiance pour les paramètres d'une loi normale Intervalle de confiance En introduisant la variable aléatoire centrée réduite U = X?100

:

Sylvie Rousseau 1

Quelques rappels sur les intervalles de confiance

I/ Généralités

Soient : X une variable aléatoire de loi paramétrée par et X ,...,X n1 n variables i.i.d selon la loi de X.

1) Principe d'un intervalle de confiance

Plutôt que d'estimer ponctuellement la vraie valeur inconnue du paramètre , on recherche un intervalle

recouvrant "très vraisemblablement » cette vraie valeur.

Définition

: On appelle intervalle de confiance de niveau de confiance 1 du paramètre tout intervalle

IC tel que :

PIC1 pour

01, fixé.

Les bornes de l'intervalle de confiance IC dépendent de l'échantillon, elles sont donc aléatoires.

Par abus de langage, on note souvent

PIC1.

Remarquons que si

augmente (ou que si n augmente), l'amplitude de l'intervalle de confiance diminue.

2) Vocabulaire

La probabilité

pour que l'intervalle de confiance ne contienne pas la vraie valeur peut être répartie différemment de part et d'autre des bornes de l'intervalle de confiance. Ecrivons donc 1 2 où 1 et 2

mesurent respectivement les risques à gauche et à droite de dépasser un seuil plancher ou plafond.

L'intervalle de confiance est dit bilatéral quand 12

00 et . Si

D 12 2= , l'intervalle est dit symétrique. Il est dissymétrique sinon. L'intervalle de confiance est dit unilatéral si 12 0 : - quand on veut assurer une valeur minimale au paramètre à estimer, on considère 12

0= et , l'intervalle de confiance est alors de la forme :

IC a - quand on ne veut absolument pas dépasser un seuil maximal, on prend 12

0= et et

on obtient alors un intervalle de confiance de la forme :

IC b,.

3) Construction

Pour construire un intervalle de confiance, on utilise une variable aléatoire dont on connaît la distribution

de probabilité.

Définition : une fonction pivotale pour le paramètre est une fonction des observations ),...,(1nXXet du

paramètre dont la loi ne dépend pas du paramètre .

On recherche dans la suite des fonctions pivotales particulières adaptées aux cas étudiés.

Sylvie Rousseau 2

II/ Intervalles de confiance pour l'espérance

On envisage deux cas :

la variable aléatoire mesurée est normale et le nombre de réalisations est quelconque,

la variable aléatoire mesurée n'est pas normale et le nombre de réalisations est important. Dans

ce cas, la distribution de la moyenne empirique tend vers une loi normale d'après le théorème

central limite. On parlera d'intervalle de confiance asymptotique.

Dans la suite on considère

X ~ N(m, ) X ,...,X

n 21
et n variables i.i.d selon la loi de X.

On définit la moyenne empirique

XnX ni in 1 1 et la variance empirique modifiée SnXX nin in ' 2 1 1 2 1

1) Cas où la variance est connue

Après centrage et réduction de la moyenne empirique, on obtient : nXm n N01,

On a :

Pu nXmu

n

1 où u est le fractile d'ordre 12

D de la loi N01,.

Ce qui revient à :

PX unmX unnn

1.

Quand la variance est connue, l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi

normale s'écrit donc au niveau

1D sous la forme suivante :

x n est la réalisation de X n sur l'échantillon.

Remarque

: si 5%, le fractile d'ordre 0,975 de la loi normale centrée réduite correspond à 1,96. si

10%, le fractile d'ordre 0,95 de la loi normale centrée réduite vaut environ 1,64.

2) Cas où la variance est inconnue

On a :

nXm SSt n n n

1 (loi de Student à n-1 degrés de libertés).

d'où

Pt nXm

St n n

1 où t est le fractile d'ordre 12

D de la loi St n()1 et donc PX tS nmX tS nnnnn 1.

Quand la variance est inconnue, l'intervalle de confiance bilatéral symétrique pour l'espérance d'une loi

normale s'écrit donc au niveau

1D sous la forme suivante :

x n et s n' sont les réalisations respectives de X n et S n' sur l'échantillon.

Remarque

: quand n, on approxime la loi de Student par la loi normale centrée réduite. On retrouve alors le cas précédent. IC ( m) = xunxun nn

IC (m) = xts

nxts n nn nn

Sylvie Rousseau 3

3) Cas particulier : intervalle de confiance pour une proportion

Soient

X ,...,X

n1 i.i.d. selon pB et pnBXX n i i 1 . Notons FX n n estimateur sans biais de p. - Dans le cas de grands échantillons : En approchant une loi binomiale vers une loi normale, on a : nFp ppN n (),101 loi n

Ce qui permet d'écrire :

1)1(upppFnuP

n où u est le fractile d'ordre 12 D de la loi N01,. Et donc l'intervalle de confiance bilatéral symétrique pour une proportion p au niveau

1D s'obtient en

résolvant l'inéquation : upppFn n )1(

Ce qui donne en notant

fn la réalisation de F n sur l'échantillon: nuffnu nu nuf n uffnu nu nuf IC(p) nnnnnn

²11

4² 2²

²11

4² 2² Pour une taille d'échantillon importante, on considère l'approximation suivante : nffufnffufpIC nnnnnn

1 , 1)(

Cette approximation est parfaitement justifiée sur le plan théorique. En effet, d'après le théorème de Slutsky, on a : FF pp nnp 11.

On en déduit donc que :

nFp FFN n nn (),101 loi n

D'où :

Pu nFp

FFu n nn )11 où u est le fractile d'ordre 12 D de la loi N01,.

Quand n est grand, l'intervalle de confiance bilatéral symétrique pour une proportion s'écrit donc au

niveau

1D sous la forme indiquée :

fn est la réalisation de F n sur l'échantillon. - Sinon, construction d'intervalles de confiance " exacts » :

On construit ces intervalles en considérant la fonction de répartition de la loi binomiale. Si la

probabilité de recouvrement de l'intervalle ne vaut pas exactement

1 , on prend l'intervalle ayant la

plus petite probabilité de recouvrement parmi ceux ayant une probabilité de recouvrement supérieure à

1D. IC (p) =

fuff nfuff n nnn nnn 11

Sylvie Rousseau 4

III/ Intervalles de confiance pour la variance d'une loi normale

Soient

X ~ N(m, ) X ,...,X

n 21
et n variables i.i.d selon la loi de X.

1) Cas où l'espérance est connue

Soit SnXm ni in * 2 1 2 1 . On a nS n * 2 2 2 n

D'où

PnS n 12 22
2 2 122
1 où 1 2 est le fractile d'ordre 1 de la loi 2 n, et 122
est le fractile d'ordre 12de la loi 2 n.

Quand l'espérance est connue, l'intervalle de confiance bilatéral pour la variance d'une loi normale s'écrit

donc au niveau

1D sous la forme suivante :

s n est la réalisation de S n sur l'échantillon. Remarque : cet intervalle n'est pas centré car la loi du khi-deux n'est pas symétrique.

2) Cas où l'espérance est inconnue

On considère la variance empirique modifiée

SnXX nin in ' 2 1 1 2 1 comme fonction pivotale pour ².

On sait que

nSnn11 2 2 '

On a donc

PnS n 12 22
2 2 122
11 où 1 2 est le fractile d'ordre 1 de la loi 2 1n, et 122
le fractile d'ordre 12de la loi 2 1n.

Quand l'espérance est inconnue, l'intervalle de confiance bilatéral pour la variance d'une loi normale s'écrit

donc au niveau

1D sous la forme suivante :

s n est la réalisation de S n sur l'échantillon. IC ( 2 ) = nsns nn** 2 1 222
2 2 21
IC ( 2 nsns 11 2 1 222
2 2 21
n nquotesdbs_dbs35.pdfusesText_40
[PDF] intervalle de confiance student

[PDF] intervalle de confiance d'une moyenne excel

[PDF] unité commerciale définition

[PDF] climat définition cycle 3

[PDF] definition de meteorologie

[PDF] unité commerciale physique et virtuelle complémentaire

[PDF] definition meteo

[PDF] dispense cap petite enfance

[PDF] deaes

[PDF] formule variance

[PDF] problème du second degré seconde

[PDF] bpjeps

[PDF] moyenne nationale bac francais 2017

[PDF] moyenne nationale math bac s

[PDF] moyenne nationale bac philo 2015