[PDF] Fonctions circulaires et applications r´eciproques





Previous PDF Next PDF



La fonction Arctangente

Pour le calcul la calculatrice utilise l'algorithme CORDIC. Page 3. 5°) Valeurs remarquables. On utilise une lecture inverse du tableau des 



Chapitre V Fonctions arcsin arccos

http://math.univ-lyon1.fr/~tchoudjem/ENSEIGNEMENT/L1/cours10.pdf



Les-nombres-complexes.pdf

la tangente: Soit z=a+ib non nul. Si a>0. Alors de tan(?)=b/a avec la calculatrice ou le tableau des valeurs remarquables



Mathématiques Rappels sur les fonctions usuelles 1. Logarithme f

Valeurs remarquables : ? ln(1) = 0. ? ln(e) = 1 Autres propriétés remarquables : ... ?x ? R+ Arctan(x) ? x (comparaison à la tangente en 0).



Feuille dexercices 7 Fonctions trigonométriques réciproques

2 arctan (. 1. 3. ) Correction exercice 2. 1. 0 <. 1. 3. < 1 ? arctan(0) < arctan (. 1. 3. ) < arctan(1). Car arctan est strictement croissante donc.



CONCOURS A TB - 2020 Lépreuve de Calcul et Raisonnement de

fonction arctangente. même s'il avait oublié quelques valeurs remarquables de la fonction arctan – et qu'il ne parvenait pas `a les retrouver.



Fonctions trigonométriques inverses

Si ? est la valeur principale des fonction trigonométriques inverses impliquée alors arcsin(sin(?)) = ? arccos(cos(?)) = ? arctan(tan(?)) = ?.



Devoir de Mathématiques 2 : corrigé Exercice 1. Valeurs

Valeurs remarquables de cosinus sinus et tangente 2. f est la composée de arctan et g donnée par g(t) = sin(t). 1 ? cos(t). : f = arctan ?g.



Fonctions circulaires et applications r´eciproques

Quelques valeurs remarquables des fonctions sinus cosinus et tangente Il faut prendre garde au fait que l'expression Arctan(tan?) est définie pour tout ...



fonctions-usuelles.pdf

f(x)=arcsin(x) g(x)=arccos(x) h(x)=arctan(x)?? a) Fonctions hyperboliques f(x)=sinh(x)g(x)=cosh(x) h(x)=tanh(x)? Sinus et cosinus : valeurs remarquables.



[PDF] La fonction Arctangente

On utilise une lecture inverse du tableau des valeurs remarquables Nous pouvons également obtenir les valeurs des arctangentes de (cf voir V) x 0 6



[PDF] Chapitre V Fonctions arcsin arccos arctan 1 Définitions 2 Propriétés

1 mar 2017 · On note arctan : R ? [??/2 ?/2] la fonction réciproque i e si x ? R alors y = arctanx ? tany = x ET ? ?/2



[PDF] Feuille dexercices 7 Fonctions trigonométriques réciproques

1 + tan2( ) = 2sin( ) cos( ) × cos2( ) = 2sin( )cos( ) = sin(2 ) 3 sin(2arctan( 1 3 )) = 2tan(arctan ( 1 3))



[PDF] Formulaire de trigonométrie 1 Fonctions trigonométriques - LPSM

On peut donner explicitement quelques valeurs remarquables : cos(0) = 1 ; cos (?6) = ?3 2; cos (?4) = ?2 2; cos (?3) = 1 2; cos (?2) = 0 On en déduit



[PDF] Les fonctions de référence

La fonction Arctan est impaire La démonstration de ce théorème est identique à la démonstration du théorème 14 page 21 Valeurs usuelles de la fonction 



[PDF] Chapitre bonus 1 : Trigonométrie - Julian Tugaut

Fonctions tangente et arctangente 4 Formules trigonométriques 5 Angles remarquables Elle est `a valeurs dans l'intervalle [?1; 1] Julian Tugaut



[PDF] Rappels de trigonométrie - Normale Sup

I 1 Valeurs particulières III 2 Les fonctions arccos arcsin arctan Dérivée : la fonction arcsin est dérivable sur ] ? 11[ et



[PDF] Les fonctions circulaires réciproques - MPSI - Camille Guerin

Remarquons que Arctan réciproque d'une fonction impaire est elle aussi impaire Voici quelques valeurs remarquables de la fonction Arctan x 0 ? 3 3



[PDF] Fonctions trigonométriques réciproques

[ arctan[tan(y)] = y 2) On a aussi : ?x?[-1 ;1] arcsin(-x) = -arcsin(x) et ?x 

  • Quel est la valeur de arctan ?

    La règle de la fonction arc tangente de base est f(x)=arctan(x). f ( x ) = arctan ? On note aussi cette fonction f(x)=tan?1(x). f ( x ) = tan ? 1 ?
  • Comment montrer que la fonction arctangente est impaire ?

    tan y x = - - . Arctan x y - = - . Arctan Arctan y y - = - . Il en résulte que la fonction Arctan est impaire.
  • Comment calculer les limites de arctan ?

    - Si ab < 1 alors cos(Arctan a + Arctan b) > 0 et donc (Arctan a + Arctanb )est compris entre -pi/2 et pi/2 .
  • Nous pouvons alors définir la fonction arctangente de la façon suivante. les asymptotes horizontales. En posant l'angle y=arctan(x), on cherche donc à simplifier l'expression cos(arctan(x))=cos(y). Ainsi, cos(arctan(x))=cos(y)=1?x2+1.

Chapitre II

Fonctions circulaires et applications

r

´eciproquesA Fonctions circulaires

A.1 Rappels de trigonom

´etrie?Les fonctions sinus, cosinus et tangenteLes fonctionscosinusetsinussont d´efinies surR, `a valeurs dans [-1,1], 2π-p´eriodiques et d´erivables surRavec pour toutx?R cos ?x=-sinxet sin?x= cosx. Par ailleurs, la fonction cosinus est paire et la fonc- tion sinus est impaire. On appellefonction tangentela fonction not´ee tan d´efinie surR\?π2 +πZ?par tanx=sinxcosx Il s"agit d"une fonction impaire,π-p´eriodique, in- finiment d´erivable surR\?π2 +πZ?et qui v´erifie pour toutx?? -π2 ,π2 tan ?(x) =1cos

2x= 1 + tan2x.x

cosx sinx tanx

28Chapitre II- Fonctions circulaires et applications r´eciproques?Quelques valeurs remarquables des fonctions sinus, cosinus et tangentex0π

6π 4π 3π

22π33π45π6π

sinx01

2⎷2

2⎷3

21⎷3

2⎷2

21
20 cosx1⎷3

2⎷2

21
20- 12- ⎷2 2- ⎷3

2-1tanx01⎷31⎷3-

⎷3-1-

1⎷30

Beaucoup d"autres valeurs remarquables se retrouvent ais´ement `a partir de celles qui pr´ec`edent en

utilisant les relations entre sinus et cosinus.A.2 Variations de la fonction sinus

Puisque la fonction sinus est 2π-p´eriodique et impaire, il suffit de connaˆıtre ses variations sur l"intervalle

[0,π] pour en d´eduire les variations surR.x0π2π sin?x= cosx1 + 0- -1 sinx1 0 0 0π 2π

3π22π-π2-π-3π2-2π

-11 | | | |||||y= sinxA.3 Variations de la fonction cosinus

La fonction cosinus est 2π-p´eriodique et paire, il suffit donc de connaˆıtre ses variations sur l"intervalle

[0,π] pour en d´eduire les variations surR. x0π2π cos?x=-sinx0- -1-0 cosx 1 -1 0

A- Fonctions circulaires290π

3π22π-π2-π-3π2-2π

-11 | | | |||||y= cosxA.4 Variations de la fonction tangente

La fonction tangente estπ-p´eriodique et impaire donc il suffit donc de connaˆıtre ses variations sur

l"intervalle?0,π2 ?. Pour toutx??0,π2 ?, on a tan?x= 1 + tan2x >0 donc la fonction tangente est strictement croissante sur l"intervalle?0,π2 ?. Il faut prendre garde au fait que la fonction tangente n"est pas globalement croissante puisqu"il s"agit d"une fonction p´eriodique! x0π2 tan?x= 1 + tan2x1 + tanx+∞ 0 | | | ||||0π

4π2π

3π2-π2-π-3π21y= tanx

30Chapitre II- Fonctions circulaires et applications r´eciproquesB Fonctions r

´eciproques des fonctions circulairesB.1 La fonction arcsinus ?D´efinitionLa fonction sinus est continue surRet strictement croissante sur l"intervalle?-π2 ,π2 ?, elle r´ealise donc

une bijection de cet intervalle sur son image [-1,1] et on peut d´efinir son application r´eciproque.B.1.1 D´efinition

On appellefonction arcsinus, et on note

Arcsin : [-1,1]→?

-π2 ,π2

,x?→Arcsinx ,l"application r´eciproque de la restriction de la fonction sinus `a l"intervalle

-π2 ,π2 .B.1.2 Remarques ?Pour toutx?[-1,1], Arcsinxest la mesure d"anglecompriseentre-π2 etπ2 dont le sinus vautx.?Pour toutx?[-1,1], on a sin?Arcsinx?=x.?Pour toutθ??-π2 ,π2 ?, on a Arcsin?sinθ?=θ.

Il faut prendre garde au fait que l"expression Arcsin?sinθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ??-π2 ,π2

En effet, comme on l"a pr´ecis´e ci-dessus, Arcsin?sinθ?d´esigne la mesure d"angle entre-π2

etπ2 dont le sinus vaut sinθi.e.il s"agit de l"unique r´eelθ0??-π2 ,π2 ?tel qu"il existek?Zavecθ=θ0+2kπ.

Par exemple, on a Arcsin?sin?17π8

??=π8

´Etude des variations de la fonction arcsinusLes variations de la fonction arcsinus sur l"intervalle [-1,1] sont les mˆemes que celles de la fonction

sinus sur l"intervalle? -π2 ,π2 .x-1 0 1

Arcsinx

2 -π2 0

0 1-1π

2

2y= Arcsinx

B- Fonctions r´eciproques des fonctions circulaires31

B.1.3 Proposition

La fonction arcsinus est d´erivable sur ]-1,1[ et pour toutx?]-1,1[,Arcsin?(x) =1⎷1-x2.D´emonstration

En effet, pour toutx?]-1,1[, on a

Arcsin

?(x) =1sin ?(Arcsinx)=1cos(Arcsinx).Mais Arcsinx??-π2 ,π2

?et la fonction cosinus est positive sur cet intervalle donc cos(Arcsinx)?0.Par cons´equent, on peut ´ecrire

Arcsin

?(x) =1?cos

2(Arcsinx)=1?1-sin2(Arcsinx)et la conclusion vient du fait que sin(Arcsinx) =x.B.1.4 Remarque

Le graphe de la fonction arcsinus ayant ´et´e obtenu par sym´etrie, on sait qu"il admet des tangentes

verticales pourx=-1 etx= 1 ainsi qu"une tangente de pente 1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arcsin puisque

Arcsin

?(0) = 1,limx→-1+1⎷1-x2= +∞et limx→1-1⎷1-x2= +∞.B.2 La fonction arccosinus

?D´efinitionLa fonction cosinus est continue surRet strictement d´ecroissante sur l"intervalle [0,π], elle r´ealise donc

une bijection de cet intervalle sur son image [-1,1] et on peut d´efinir son application r´eciproque.B.2.1 D´efinition

On appellefonction arccosinus, et on note

Arccos : [-1,1]→[0,π],x?→Arccosx ,l"application r´eciproque de la restriction de la fonction cosinus `a l"intervalle [0,π].B.2.2 Remarques

?Pour toutx?[-1,1], Arccosxest la mesure d"anglecompriseentre 0 etπdont le cosinus vautx.?Pour toutx?[-1,1], on a cos?Arccosx?=x.

32Chapitre II- Fonctions circulaires et applications r´eciproques?Pour toutθ?[0,π], on a Arccos?cosθ?=θ.

Il faut prendre garde au fait que l"expression Arccos?cosθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ?[0,π].

En effet, comme on l"a pr´ecis´e ci-dessus, Arccos?cosθ?d´esigne la mesure d"angle entre 0 etπdont

le cosinus vaut cosθi.e.il s"agit de l"unique r´eelθ0?[0,π] tel qu"il existek?Zavecθ=θ0+ 2kπ.

Par exemple, on a Arccos?cos?12π5

??=2π5

´Etude des variations de la fonction arccosinusLes variations de la fonction arccosinus sur l"intervalle [-1,1] sont les mˆemes que celles de la fonction

cosinus sur l"intervalle [0,π].x-1 0 1

Arccosx

2 -π2 0

0 1-1π

2πy= ArccosxB.2.3 Proposition

La fonction arccosinus est d´erivable sur ]-1,1[ et pour toutx?]-1,1[,Arccos?(x) =-1⎷1-x2.D´emonstration

En effet, pour toutx?]-1,1[, on a

Arccos

?(x) =1cos

?(Arccosx)=1-sin(Arccosx).Mais Arccosx?[0,π] et la fonction sinus est positive sur cet intervalle donc sin(Arccosx)?0. Parcons´equent, on peut ´ecrire

Arccos

?(x) =-1?sin

2(Arccosx)=-1?1-cos2(Arccosx)et la conclusion vient du fait que cos(Arccosx) =x.

B- Fonctions r´eciproques des fonctions circulaires33

B.2.4 Remarque

Le graphe de la fonction arccosinus ayant ´et´e obtenu par sym´etrie, on sait qu"il admet des tangentes

verticales pourx=-1 etx= 1 ainsi qu"une tangente de pente-1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arccos puisque

Arccos

?(0) =-1,limx→-1+-1⎷1-x2=-∞et limx→1--1⎷1-x2=-∞.B.3 La fonction arctangente

?D´efinitionLa fonction tangente est continue et strictement croissante sur ?-π2 ,π2 ?, elle r´ealise donc une bijection

de cet intervalle sur son imageRet on peut d´efinir son application r´eciproque.B.3.1 D´efinition

On appellefonction arctangente, et on note

Arctan :R→?

-π2 ,π2

,x?→Arctanx ,l"application r´eciproque de la restriction de la fonction tangente `a l"intervalle

-π2 ,π2 .B.3.2 Remarques ?Pour toutx?R, Arctanxd´esigne donc la mesure d"anglecompriseentre-π2 etπ2 dont la tangente vautx.?Pour toutx?R, on a tan?Arctanx?=x.?Pour toutθ??-π2 ,π2 ?, on a Arctan?tanθ?=θ.

Il faut prendre garde au fait que l"expression Arctan?tanθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ??-π2 ,π2

En effet, comme on l"a pr´ecis´e ci-dessus, Arctan?tanθ?=θd´esigne la mesure d"angle entre-π2

et π2 dont la tangente vaut tanθi.e.il s"agit de l"unique r´eelθ0??-π2 ,π2 ?tel qu"il existek?Zavec θ=θ0+ 2kπ. Par exemple, on a Arctan?tan?15π7 ??=π7

´Etude des variations de la fonction arctangenteLes variations de la fonction arctangente surRsont les mˆemes que celles de la fonction tangente sur

l"intervalle?-π2 ,π2 ?.x-∞0 +∞

Arctanx

2 -π2 0

34Chapitre II- Fonctions circulaires et applications r´eciproques-π20π

2y= ArctanxB.3.3 Proposition

La fonction arctangente est d´erivable surRet

pour toutx?R,Arctan?(x) =11 +x2.D´emonstration

Pour toutx?R, on a

Arctan

?(x) =1tan ?(Arctanx)=11 + tan

2(Arctanx)=11 +x2.B.3.4 Remarque

Le graphe de la fonction arctangente ayant ´et´e obtenu par sym´etrie, on sait qu"il admet une tangente

de pente 1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arctan puisque Arctan ?(0) = 1.B.4 Deux relations remarquables entre les fonctions trigonom

´etriquesAu vu de l"analogie entre les graphes des fonctions arcsinus et arccosinus, il est naturel de se demander

s"il n"existe pas un lien entre ces deux fonctions. Ce lien tr`es simple est donn´e par le r´esultat suivant :B.4.1 Proposition

Pour toutx?[-1,1], on a : Arcsin(x) + Arccos(x) =π2 .D´emonstration

On propose deux d´emonstrations.

?Pour toutx?[-1,1], on posef(x) = Arcsin(x) + Arccos(x). Comme les fonctions arcsinus etarccosinus sont toutes deux d´erivables sur ]-1,1[, la fonctionfest elle-aussi d´erivable sur ]-1,1[

B- Fonctions r´eciproques des fonctions circulaires35 et on a f

?(x) = Arcsin?(x) + Arccos?(x) =1⎷1-x2+-1⎷1-x2= 0.Il s"ensuit que la fonctionfest constante sur ]-1,1[. On af(0) = Arcsin(0)+Arccos(0) = 0+π2

=π2doncf(x) =π2

pour toutx?]-1,1[.Enfin, les fonctions arcsinus et arccosinus sont toutes deux continues `a droite en-1 doncfestaussi continue `a droite en-1i.e.f(-1) = limx→-1+f(x) =π2

. De mˆeme, les fonctions arcsinus etarccosinus sont toutes deux continues `a gauche en 1 doncfest aussi continue `a gauche en 1i.e.f(1) = limx→1-f(x) =π2

. On a donc bienf(x) =π2 pour toutx?[-1,1].?Soitx?[-1,1], on noteα= Arcsin(x) etβ= Arccos(x), alors sinα= sin?Arcsin(x)?=x

cosβ= cos?Arccos(x)?=xOn a donc sinα= cosβd"o`u (c"est une formule de trigonom´etrie classique) sinα= sin?π2

-β?.La fonction arcsinus est `a valeurs dans ?-π2 ,π2 ?doncα??-π2 ,π2 ?. La fonction arccosinus est `avaleurs dans [0,π] doncβ?[0,π], d"o`uπ2 -β??-π2 ,π2 ?.Ainsi, on a sinα= sin?π2 -β?alors queαetπ2 -βsont dans l"intervalle?-π2 ,π2 ?sur lequel lafonction sinus est bijective. Par cons´equentα=π2 -βi.e.α+β=π2 .Voici une autre relation remarquable impliquant cette fois-ci la fonction arctangente.

B.4.2 Proposition

Arctan(x) + Arctan?1x

??π2 six >0 π2 six <0D´emonstration

Pour toutx >0, on posef(x) = Arctan(x)+Arctan?1x

?. La fonctionfest d´erivable sur chacun desintervalles ]- ∞,0[ et ]0,+∞[ et on a f ?(x) = Arctan?(x) + Arctan??1x -1x 2? =11 +x2+11 + 1x

2×?

-1x 2?

= 0.Il s"ensuit que la fonctionfest constantesur chacun des intervallessur lesquels elle est d´efiniei.e.il existe une constantectelle que l"on aitf(x) =cpour toutx >0 et il existe une constantedtelleque l"on aitf(x) =dpour toutx <0.On af(1) = Arctan(1) + Arctan?11

?=π4 +π4 =π2 doncf(x) =π2 pour toutx >0.D"autre part, on af(-1) = Arctan(-1) + Arctan1-1=-π4 -π4 =-π2 doncf(x) =-π2 pour toutx <0.quotesdbs_dbs35.pdfusesText_40
[PDF] fonction circulaire réciproque cours

[PDF] limite de arctan

[PDF] limite arctan en 0

[PDF] le pouvoir du peuple par le peuple pour le peuple

[PDF] fonctions trigonométriques réciproques pdf

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition

[PDF] comment la terre d'israël fut inventée pdf

[PDF] origine des juifs d'israel

[PDF] appareil circulatoire cours

[PDF] système circulatoire

[PDF] comment la terre d'israël fut inventée

[PDF] appareil circulatoire schéma