[PDF] Espaces Vectoriels Normés et Topologie





Previous PDF Next PDF



Continuité uniforme - SamFaitDesMaths

20 oct. 2016 La continuité uniforme est une notion plus forte que la continuité puisque ... Remarque 2 (Interprétation graphique).



Fonctions continues et uniformement continues

Continuité uniforme. 5. 2.1. Définition de la continuité uniforme sur un intervalle. Exercice : si ƒ est u-continue elle admet une limite finie 5.



MAT402 : Suites et séries de fonctions

Par définition de la convergence uniforme il existe N ? N tel que : On a démontré graphiquement



La continuité une idée-force de design pour larchitecture graphique

21 oct. 2015 Composition graphique et continuité de lecture ... représentations visuellement uniformes entre éléments et statiques dans le temps ...



Chapitre 8. - Suites et séries

1.1 Étude graphique (utilisation d'un classeur pré-chargé) . 4.2 Un exemple de convergence non uniforme. ... La continuité de f entraîne que si la.



CONTINUITÉ DES FONCTIONS

premières définitions rigoureuses au concept de limite et de continuité c) À l'aide du graphique conjecturer la limite de la suite (un).



SUITES et SERIES DE FONCTIONS

Graphique de f n avec indication de sa borne supérieure (la flèche indique comment évolue le graphique si n @ &). Convergence uniforme dans tout segment de.



Chapitre 8. - Suites et séries

4.2 Un exemple de convergence non uniforme. suites (représentation graphique et table de valeurs). ... La continuité de f entraîne que si la suite un.



Intégrale de Riemann

1 set. 2022 De nombreuses propriétés peuvent être transférées par convergence uniforme d'une suite de fonctions (fn)n á une fonction limite f : la ...



Espaces Vectoriels Normés et Topologie

2.1.4 Applications Lipschitziennes et uniforme continuité . . . . . . . . . . . . . 27. 2.2 Notion de complétude dans un espace vectoriel normé .



[PDF] SMIA 1 ANALYSE 1 FONCTIONS REELLES : Limite Continuité et

Caractérisation séquentielle de continuité uniforme Graphiquement la courbe représentative de f admet le point (0 0) comme centre de symétrie



[PDF] Continuité uniforme - SamFaitDesMaths

20 oct 2016 · Graphiquement la proposition 1 traduit le fait que si deux points quelconques sont proches leurs images par une fonction uniformé- ment 



[PDF] Fonctions continues et uniformement continues

La notion de continuité uniforme est globale (? ne dépend que ?) Il est clair que la continuité uniforme sur I entraîne la continuité sur I Par contre la 



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · La fonction f est continue sur un intervalle I si et seulement si f est continue en tout point de I Remarque : Graphiquement la continuité d 



[PDF] Intégration 1 Continuité uniforme 2 Fonctions continues par morceaux

Interpréter graphiquement en termes d'aires la suite (In)n?N Combien de fois la continuité uniforme donnée par le théorème de Heine joue un rôle 



[PDF] Université Paul Sabatier 2011/12 - Exercice 1 (extrait capes 2012

(a) Esquisser l'allure de la représentation graphique des fonctions h1 et h2 sur [104104 + 1] Commentaire ? (b) Étudier la continuité uniforme de la 



[PDF] Limites et fonctions continues

4 3 7 Continuité uniforme Figure 4 1 – Représentation graphique d'une fonction (Graphe de f(x) =



[PDF] Suites et séries de fonctions - Cours de Mathématiques - MP

La convergence uniforme se traduit graphiquement par l'exis- tence d'un rang à partir duquel le graphe de fn est compris entre ceux de f ?? et f +?

  • Comment montrer que f est uniformément continue ?

    f est uniformément continue veut dire que : Pour tout ?>0, il existe ?>0 tel que pour tout points x,y dans R, x?y<? implique que f(x)?f(y)<?. En mots, si la distance entre x et y est assez petit, alors la distance entre f(x) et f(y) est petit également.
  • Comment savoir si une courbe est continue ?

    Définition : Soit une fonction f définie sur un intervalle I. On dit que f est continue sur I si on peut tracer la courbe représentative de f sur I "sans lever le crayon". Propriétés : 1) Les fonctions x xn (n ?N ) et plus généralement les fonctions polynômes sont continues sur R .
  • Quand Dit-on qu'une fonction est uniformément continue ?

    Définition : Soit f une fonction entre deux espaces métriques E et F. On dit que f est uniformément continue si pour tout ?>0, il existe ??>0 vérifiant que pour tout a?E, B(a,??)?f?1(B(f(a);?)).
  • La fonction f est dite continue au point a si f(a) est une limite de f en ce point. Si F est séparé (ou même seulement T1) comme tout espace métrisable, il suffit pour cela qu'il existe une limite de f en ce point.
Cycle Préparatoire Polytechnique2èmeannée

Espaces Vectoriels Normés et Topologie

Polycopié de cours

Rédigé par YannickPrivat

Bureau 321 - Institut Élie Cartan Nancy (Mathématiques) - Université Henri Poincaré Nancy 1

B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex.

e-mail : Yannick.Privat@iecn.u-nancy.fr ii

IntroductionCe cours présente les grands concepts à l"origine de la Topologie et de l"Analyse fonctionnelle.

L"étymologie du mot " topologie » est éloquente. En effet, en Grec,topossignifielieutandis que

logossignifieétude.

Ce domaine des Mathématiques s"intéresse donc à l"étude deslieux, appelés en généralespaceset

aux propriétés qui les caractérisent. L"Analyse Fonctionnelle est très liée à la Topologie. En effet,

dans cete branche des Mathématiques, on s"intéresse plus précisément aux espaces de fonctions.

Un espace fonctionnel que vous connaissez probablement très bien estC([0,1]), l"espace des fonctions continues sur le segment[0,1].

Pour vous donner un exemple assez concret, vous connaissez peut-être le résultat suivant : sifest

continue sur[0,1], alors il existex0etx1, deux éléments de[0,1]qui, respectivement, maximise et

minimisefsur ce segment. Nous verrons qu"il existe un résultat bien plus général permettant de

démontrer l"existence de minima et maxima d"une fonction. On comprendra aisémnent l"intérêt

que cela présente dans le domaine de l"Optimisation par exemple. En Physique notamment, il est courant que l"on cherche à maximiser ou minimiser une énergie. Historiquement, c"est LeonhardEuler(1707-1783) qui a initié la Topologie. En 1736, il présenta

de Russie, située dans une enclave territoriale totalementisolée du territoire russe, (jusqu"en 1945

" Prusse orientale ») au bord de la mer Baltique, entre la Pologne et la Lituanie. L"histoire veut

que LéonhardEuler, en visite dans cette ville, ait eu à résoudre le problème quipréoccupait

fortement ces habitants : " Est-il possible de trouver un circuit qui emprunte une foiset une seule chacun des sept ponts de la ville? »

La réponse, négative, fut trouvée par LéonhardEuler. Son intérêt principal réside dans le fait

que ce résultat ne dépend d"aucune mesure (aucune distance). La Topologie a connu une avancée considérable à la fin du XIX

èmesiècle et tout au long du

XX èmesiècle. Quelques grands noms de la Topologie sont : •HenriPoincaré(1854-1912); (homotopie, cohomologie) •DavidHilbert(1862-1943); (bases de Hilbert, espaces de Hilbert) •MauriceFréchet(1878-1973); (convergence uniforme, convergence compacte, d"équiconti- nuité) •StefanBanach(1892-1945); (fondateur de l"Analyse Fonctionnelle, espaces de Banach) iii iv Table des matières1 Espaces vectoriels normés1

1.1 Quelques rappels d"Algèbre linéaire . . . . . . . . . . . . . . . .. . . . . . . . . . 1

1.1.1 Groupes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Structure d"espace vectoriel . . . . . . . . . . . . . . . . . . . .. . . . . . 2

1.2 Quelques généralités sur les espaces vectoriels normés. . . . . . . . . . . . . . . . 4

1.2.1 Quelques éléments sur les normes . . . . . . . . . . . . . . . . . .. . . . . 4

1.2.2 Normes dansRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Notions sur les ouverts et les fermés . . . . . . . . . . . . . . .. . . . . . 8

1.2.4 Intérieur et Adhérence d"un ensemble . . . . . . . . . . . . . .. . . . . . . 13

2 Suites et continuité dans un e.v.n.17

2.1 Convergence et continuité dans un e.v.n. . . . . . . . . . . . . .. . . . . . . . . . 17

2.1.1 Suites et convergence dans un espace vectoriel normé .. . . . . . . . . . . 17

2.1.2 Notion de densité dans un espace vectoriel normé . . . . .. . . . . . . . . 20

2.1.3 Limite et continuité dans un espace vectoriel normé . .. . . . . . . . . . . 23

2.1.4 Applications Lipschitziennes et uniforme continuité . . . . . . . . . . . . . 27

2.2 Notion de complétude dans un espace vectoriel normé . . . .. . . . . . . . . . . 28

2.2.1 Suites de Cauchy dans un E.V.N. . . . . . . . . . . . . . . . . . . . .. . . 28

2.2.2 Espaces complets et exemples . . . . . . . . . . . . . . . . . . . . .. . . . 30

2.2.3 Le théorème du point fixe et ses applications . . . . . . . . .. . . . . . . 34

2.3 Compacité dans un espace vectoriel normé . . . . . . . . . . . . .. . . . . . . . . 40

2.3.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

2.3.2 Lien entre applications continues et uniformément continues . . . . . . . . 42

2.3.3 Notion de densité et approximations uniformes . . . . . .. . . . . . . . . 44

2.3.4 Propriété de Borel-Lebesgue et recouvrements . . . . . . .. . . . . . . . . 47

2.4 Connexité dans les espaces vectoriels normés . . . . . . . . .. . . . . . . . . . . . 49

2.4.1 Connexité par arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49

v viTABLE DES MATIÈRES

2.4.2 Introduction aux espaces connexes . . . . . . . . . . . . . . . .. . . . . . 50

2.5 Applications linéaires et continuité . . . . . . . . . . . . . . .. . . . . . . . . . . 52

2.5.1 Cas des applications linéaires . . . . . . . . . . . . . . . . . . .. . . . . . 52

2.5.2 Applications linéaires en dimension finie . . . . . . . . . .. . . . . . . . . 56

2.5.3 Cas des applications multilinéaires . . . . . . . . . . . . . .. . . . . . . . 57

3 Introduction à l"Analyse Fonctionnelle61

3.1 Espaces préhilbertiens réels et complexes . . . . . . . . . . .. . . . . . . . . . . . 61

3.1.1 Espaces euclidiens et préhilbertiens réels . . . . . . . .. . . . . . . . . . . 61

3.1.2 Espaces préhilbertiens complexes . . . . . . . . . . . . . . . .. . . . . . . 62

3.1.3 Comment rendre des bases orthonormées? . . . . . . . . . . . .. . . . . . 64

3.1.3.1 Le procédé d"orthonormalisation de Gram-Schmidt .. . . . . . . 64

3.1.3.2 FactorisationQRd"une matrice inversible . . . . . . . . . . . . . 66

3.1.4 Notion d"orthogonalité . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 68

3.1.5 Théorèmes de projection dans un espace préhilbertien. . . . . . . . . . . 70

3.1.5.1 Introduction et aspects géométriques du problème .. . . . . . . 70

3.1.5.2 Le théorème de la projection orthogonale . . . . . . . . .. . . . 72

3.1.5.3 Version algébrique du théorème de la projection . . .. . . . . . 73

3.1.5.4 Matrice et déterminant de Gram . . . . . . . . . . . . . . . . . .74

3.1.5.5 Version topologique du théorème de la projection . .. . . . . . . 77

3.2 Espaces de Banach et de Hilbert . . . . . . . . . . . . . . . . . . . . . . .. . . . 79

3.2.1 Introduction et exemples . . . . . . . . . . . . . . . . . . . . . . . .. . . . 79

3.2.2 Séries dans un espace de banach . . . . . . . . . . . . . . . . . . . .. . . 81

3.2.3 Exponentielle d"endomorphismes dans un espace de Banach . . . . . . . . 84

3.2.3.1 Définition et premières propriétés . . . . . . . . . . . . . .. . . . 84

3.2.3.2 Méthodes pratiques de calcul d"exponentielles . . .. . . . . . . . 86

3.2.4 Espaces de Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 90

3.2.4.1 Introduction et exemples . . . . . . . . . . . . . . . . . . . . . .90

3.2.4.2 Notion de base hilbertienne . . . . . . . . . . . . . . . . . . . .. 91

3.2.4.3 Exemple : application aux séries de Fourier . . . . . . .. . . . . 94

Chapitre 1Espaces vectoriels normés1.1 Quelques rappels d"Algèbre linéaireSiAetBdésignent deux ensembles, on définit de prime abord le produit cartésien deAet de

B, notéA×B. Cette notation sera utilisée très régulièrement.

Définition 1.1.Produit cartésien.

•Leproduit cartésiende deux ensemblesEetF, notéE×Fest l"ensemble des couples dont le premier élément appartient àEet le second àF. •SiE=F, on noteE2=E×E.

•Cette définition se généralise aisément. SiE1, ...,Endésignentnensembles. On noteE=

E

1×...×Enle produit cartésien défini par :

E={(e1,...,en), tel quee1?E1,...,en?En}.

Exemple :on définit par exemple l"ensembleN×R+. L"élément(2,π)appartient àN×R+. Remarque :si on considère des ensembles finis (i.e. dont le nombre d"éléments de l"ensemble est fini), on appelle cardinal de l"ensemble, le nombre d"éléments de l"ensemble. Et, siEetF sont finis, on a : card(E×F) =cardE×cardF.

1.1.1 Groupes

Définissons au préalable la notion de loi de composition interne. Définition 1.2.Une loi de composition interne?sur un ensembleEest une application de

E×EdansE.

Si(a,b)?E2, l"image de(a,b)est notéea?b.

Exemples :+et×sont des lois de composition interne dansR. SurN, la loi?définie pour(a,b)?N2para?b=abest une loi de composition interne. Remarque :on note généralement lci pour désigner une loi de composition interne. En Algèbre linéaire, on parle fréquemment de lois commutatives ou associatives. 1

2CHAPITRE 1. ESPACES VECTORIELS NORMÉS

Définition 1.3.

(i)Une loi?sur un ensembleEest dite commutative si, et seulement si :?(a,b)?E2,a?b=b?a. Si deux élémentsaetbdeuxEsont tels quea?b=b?a, on dit qu"ils commutent. (ii)Une loi?surEest dite associative si, et seulement si :?(a,b,c)?E3,(a?b)?c=a?(b?c).

Dans ce cas, on peut notera?b?c.

(iii)Une loiTest dite distributive par rapport à une autre loi?surEsi, et seulement si : ?(a,b,c)?E3,(aTb)?c= (a?c)T(b?c)eta?(bTc) = (a?b)T(a?c). Exemple :surR, il est bien évident que les lois+et×sont commutatives et associatives, et× est distributive par rapport à+.

Définition 1.4.Élément neutre.

Si?est une loi surE, on dit quee?Eest neutre si, et seulement si :?x?E,e?x=x?e=x. Sieest un élément neutre, alorseest nécessairement unique. Ces définitions étant établies, nous pouvons introduire la notion de groupe. Définition 1.5.On dit que(G,?)est un groupe si?est une loi de composition interne associative

surGpour laquelle il existe un élément neutree, et tel que tout élémentx?Gest inversible,

c"est à dire qu"il existe un élémentx??Gtel quex?x?=x??x=e. Remarque :six?Gest inversible, on note en général son inversex-1, mais attention! Il ne s"agit là que d"une notation, sans rapport a priori avec un quotient dansR. Remarque 2 :si de plus,?est commutative, on dit que le groupe est commutatif ou abé- lien. Exemples :(R,+),(Q,+),(Z,+),(C,+)sont des groupes. En revanche,(Z,×)n"est pas un groupe. À votre avis, pourquoi? On définit très simplement la notion de sous-groupe : Définition 1.6.Soit(G,?), un groupe. On dit queHest un sous-groupe deGpour?siH?=∅, H?G, et si?est une loi de composition interne surHqui le munit d"une structure de groupe.

1.1.2 Structure d"espace vectoriel

Attention

! Dans le paragraphe qui va suivre, les notations+et×désigneront respectivement

des lois commutative et associative. Définissons au préalable les notions d"anneau et de corps.

Définition 1.7.Anneau.

SoitA, un ensemble,+et×, deux lois de composition interne surA. Supposons que×est associative et distributive par rapport à+.

On dit queAest un anneau si(A,+)est un groupe abélien, et s"il existe un élément neutre pour

la loi×noté1A. On parle d"anneau commutatif lorsque×est une loi commutative surA.

1.1. QUELQUES RAPPELS D"ALGÈBRE LINÉAIRE3

Remarque :le fait que(A,+)soit un groupe impose l"existence d"un neutre pour la loi+, noté traditionnellement0A. Exemples :je n"en donne que très peu car la notion de corps m"intéresse davantage que la notion d"anneau. •(N,+,×)est un anneau. • {a+b⎷

2,(a,b)?Z2}est un anneau.

•SiAest un anneau,A[X], l"ensemble des polynômes à coefficients dansAest encore un anneau.

•L"ensemble des matrices carrées de typen×n, avecn?Nfixé est un anneau non commutatif.

J"énonce à présent deux propriétés caractéristiques des anneaux que vous avez certainement déjà

rencontrées. Propriété 1.1.Soit(A,+,×), un anneaucommutatif. Soientaetb, deux éléments deA.

1.Formule du binôme de Newton.

(a+b)n=n? k=0? n k? a kbn-k, avec?n k? =n! k!(n-k)!

2.Formule des anneaux.

a n-bn= (a-b)n-1? k=0a kbn-1-k. Remarque :la notation(a+b)npar exemple doit bien-sûr être comprise dans le sens suivant: (a+b)n= (a+b)×...×(a+b)? nfois.

Passons à présent à la notion de corps.

Définition 1.8.Corps.

On dit que(K,+,×)est un corps si(K,+)est un groupe abélien,×est une loi de composition interne associative, commutative et distributive par rapport à+, pour laquelle il y a un neutre 1 K(neutre pour×) distinct de0K(neutre pour+), et si tout élément non nul deKest inversible pour×. Remarque 1 :un corps est en particulier un anneau. Remarque 2 :dans la littérature, vous pourrez peut-être trouver une définition des corps

un peu différente de celle que je donne ici : en effet, on parle parfois de corps, même lorsque la

loi×n"est pas commutative. Mais ça n"est là qu"une convention etil s"agit de la fixer dès le départ.

Exemples et contre-exemple :

•(Q,+,×)est un corps. •(C,+,×)est un corps. •En revanche,(Z,+,×)n"en est pas un. DansZ, 2 est non inversible pour×. •Un corps célèbre, souvent notéFp, oùpdésigne un nombre premier, est : F p=Z/pZ(autre notation)=?

0,1,...,p?, et?k? {1,...,p}, x?k??x≡k[p].

kest une classe d"équivalence. Mais cet exemple s"éloigne déjà un peu du thème que je souhaite

traiter ici, et si vous ne le trouvez pas parlant, laissez-lede côté, car il n"est en rien essentiel

pour comprendre la suite.

4CHAPITRE 1. ESPACES VECTORIELS NORMÉS

Définissons à présent la notion d"espace vectoriel. Définition 1.9.SoitK, un corps. On dit que(E,+,.)est unK-espace vectoriel si(E,+)est un groupe abélien et si.est une loi externe surEayantKpour domaine d"opérateur, vérifiant les quatre points suivants :?(λ,μ)?K2,?(x,y)?E2, (i) 1K.x=x; (ii)λ.(x+y) =λx+λy; (iii) (λ+μ)x=λx+μx; (iv) (λμ)x=λ(μx). Exemples :AppelonsR[X], l"ensemble des polynômes à coefficients réels.R[X]est unR-espace vectoriel. (R2,+,.)est unR-espace vectoriel. On définit de façon assez classique la notion de sous espace vectoriel. Définition 1.10.SoitEunK-espace vectoriel etX?E, un sous-ensemble deE. On dit

queXest un sous-espace vectoriel deEs"il satisfait aux conditions de stabilité linéaire, i.e. :

?(x,y)?E2et?λ?K,x+y?Xetλx?X.

Exemple :Considérons leR-espace vectorielR[X], des polynômes à coefficients réels à une

indéterminée. On appelleRn[X]l"ensemble des polynômes à coefficients réels de degré au plus

n. Alors, il est immédiat queRn[X]est un sous-espace vectoriel deR[X]. Enfin, siEetFdésignent deux espaces vectoriels, je rappelle à toute fin utile ce que l"on entend lorsque l"on écritE+FouE?F. Définition 1.11.SoientFetF?, deux sous espaces vectoriels d"un espace vectorielE. On définit l"espace :

F+F?:=?f+f?,f?Fetf?F??.

Remarque :F+F?est donc l"espace des éléments s"écrivant sous la formef+f?, avecf?

Fetf?F?.

Propriété 1.2.SoientFetF?, deux sous espaces vectoriels d"un espace vectorielE. l"espace

F+F?est un sous espace vectoriel deE.

Notation :siFetF?sont tels queF∩F?={0E}, on dit queF+F?est unesomme directe et on noteF?F?.

1.2 Quelques généralités sur les espaces vectoriels normés, intro-

duction à l"Analyse fonctionnelle

1.2.1 Quelques éléments sur les normes

Nous allons définir successivement deux notions fondamentales de l"Analyse fonctionnelle. Il s"agit

des notions dedistanceetnorme. Nous donnerons des exemples dans chaque cas.

1.2. QUELQUES GÉNÉRALITÉS SUR LES ESPACES VECTORIELS NORMÉS5

On se place dorénavant dansE, unK-espace vectoriel.

Définition 1.12.Notion de norme.

Une applicationN:E-→Rest appeléenormesi, et seulement si les trois propriétés suivantes

sont vérifiées : (i)N(x) = 0 =?x= 0, pourx?E. (ii)Soitλ?R.N(λx) =|λ|.N(x).

Remarque 1 :la propriété suivante découle directement de la notion de norme : " siNdésigne

une norme, on a pour tout élémentxde l"espace vectorielE,N(x)≥0». Par conséquent, on

peut écrire :N:E-→R+. Remarque 2 :la norme la plus connue est la norme euclidienne définie surR2par : ?.?2:R2-→R+ (x,y)?-→(x2+y2)1 2. On va vérifier que?.?2est une norme. Mais auparavant, définissons rapidement la notion de produit scalaire. Rappelons au préalable qu"une forme linéaire sur unK-espace vectorielEest

une application linéaire dont l"ensemble de définition estEet à valeurs dansK. En général,

quotesdbs_dbs35.pdfusesText_40
[PDF] fonction uniformément continue non lipschitzienne

[PDF] difference entre continue et uniformement continue

[PDF] fonction continue mais pas uniformément continue

[PDF] plan histoire des arts

[PDF] sciences des aliments cours pdf

[PDF] qualité organoleptique des aliments définition

[PDF] cours de sciences des aliments

[PDF] exercice corrigé convexité terminale es

[PDF] exercice convexité mpsi

[PDF] connexité exercices corrigés

[PDF] exercices convexité

[PDF] ensemble convexe exercices corrigés

[PDF] tp mps sciences et aliments

[PDF] mps sciences et art maths

[PDF] démontrer qu'une fonction est croissante sur un intervalle