[PDF] [PDF] 1 Programmation linéaire





Previous PDF Next PDF



1 Programmation linéaire

Document 4 : Corrigé des exercices d'optimisation linéaire. 1 Programmation linéaire Le tableau de départ pour la méthode du simplexe est donc :.



Programmation linéaire en nombres entiers : la méthode du simplexe

Programme linéaire entier facile : Un PLE qui en oubliant les contraintes d'intégrité



LES ÉTAPES DE LALGORITHME DU SIMPLEXE

Un programme linéaire (PL) mis sous la forme particulière où toutes les contraintes sont des équations et toutes les variables sont non négatives est dit sous 



TD 7 : Exercice corrigé Algorithme du simplexe Méthode des deux

Algorithme du simplexe. Méthode des deux phases. Exercice. Résoudre par la méthode des deux phases le modèle de programmation linéaire suivant :.



(Microsoft PowerPoint - 5_dualite [Mode de compatibilité])

Problème de programmation linéaire sous forme standard L'algorithme dual du simplexe est une méthode itérative pour résoudre un.



SOLUTIONNAIRE : DUAL EXERCICES 1 Formulation du dual

PPL : Le problème de programmation linéaire sous forme canonique est de maximiser Excel dans son algorithme du simplexe utilise une construction du dual ...



Programmation linéaire en nombres entiers

Il suffit de poursuivre la résolution avec l'algorithme dual du simplexe. ( ). Notes: 1) Si. (i.e. est entier).



Chapitre 3 Méthode du simplexe

égal à m. Selon le chapitre précédent nous savons que la solution optimale du problème d'optimisation linéaire max z = ctx



Cahier dexercices corrigés Eric LALLET Jean-Luc RAFFY

Correction page 42. 1.6 Programmation linéaire : le simplexe. Exercice 1.6.1 (Une histoire de fromage). Une laiterie s' 



1. Le tableau du simplexe (version perso)

On corrige la première colonne pour avoir la liste actualisée des varia- Résoudre en utilisant le tableau du simplexe



[PDF] 1 Programmation linéaire

Document 4 : Corrigé des exercices d'optimisation linéaire 1 Programmation linéaire Le tableau de départ pour la méthode du simplexe est donc :



[PDF] Exercice corrigé Algorithme du simplexe Méthode des deux phases

Algorithme du simplexe Méthode des deux phases Exercice Résoudre par la méthode des deux phases le modèle de programmation linéaire suivant :



[PDF] FSJES-AC RECHERCHE OPERATIONNELLE Semestre 6 Filière

ALGORITHME DU SIMPLEXE I - Introduction La méthode du simplexe est un algorithme qui permet la recherche de la solution optimale d'un programme linéaire 



exercices corriges de programmation lineaire methode simplexe pdf

18 mar 2020 · recueil de 100 exercices de programmation lineaire exercice corrige simplexe deux phases theoreme des ecarts complementaires exercices corriges 



[PDF] Exercice 121 Résoudre par le simplexe Max x1 + 2x2 sous

Exercice 1 2 5 Max x1 sous ? ??????? ??????? x1 ? x2 ? 1 2x1 ? x2 ? 2 x1+ x2 ? 7 x1 ? 0 x2 ? 0 Résoudre par le simplexe



[PDF] Chapitre 3 Méthode du simplexe - Cours

égal à m Selon le chapitre précédent nous savons que la solution optimale du problème d'optimisation linéaire max z = ctx



[PDF] Programmation linéaire en nombres entiers : la méthode du simplexe

Programme linéaire entier facile : Un PLE qui en oubliant les contraintes d'intégrité fournit toujours une soln optimale entière par une méthode de



[PDF] SOLUTIONNAIRE : DUAL EXERCICES 1 Formulation du dual

PPL : Le problème de programmation linéaire sous forme canonique est de maximiser Excel dans son algorithme du simplexe utilise une construction du dual 



[PDF] - Exercices de TD - 1 Modélisation - LIRMM

Maximiser le gain de l'année par la méthode du simplexe Modéliser le probl`eme sous forme d'un programme linéaire en nombres entiers



Modélisation méthode graphique et algorithme du Simplexe

Corrigés des exercices 5 page 18 + 4°) de l'exercice 10 Exercices corrigés 1 pdf Programmation linéaire en nombres entiers (2ème partie)

  • Comment résoudre un programme linéaire par la méthode du simplexe ?

    Avant que l'algorithme du simplexe puisse être utilisé pour résoudre un programme linéaire, ce programme linéaire doit être converti en un programme équivalent où toutes les contraintes technologiques sont des équations et toutes les variables sont non négatives.
  • Comment résoudre un problème de programmation linéaire ?

    Si une solution de programmation linéaire existe, alors on peut trouver la solution en utilisant les étapes suivantes.

    1Représenter graphiquement l'ensemble réalisable à partir des contraintes.2Déterminer tous les sommets.3Substituer les coordonnées de chaque sommet dans la fonction objectif.4Identifier la solution.
  • Comment trouver le dual ?

    Le dual est max z = bty, Aty ? c, y ? 0. min z = ctx, (At)tx ? b, x ? 0. ?? min z = ctx, Ax ? b, x ? 0. Donc, le dual du dual est le primal.
  • Le primal a une solution optimale est le dual a aussi une solution optimale. Le primal est non-borné est le dual est irréalisable. Le dual est irréalisable est le primal est non-borné. Tous les deux probl`emes sont irréalisables.

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE

U.F.R. SEGMI Année universitaire 2012 - 2013

Master d"économie Cours de M. Desgraupes

Méthodes Numériques

Document 4 : Corrigé des exercices d"optimisation linéaire1 Programmation linéaire 1 Méthode du simplexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Raffinerie de pétrole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Méthode des variables ajoutées . . . . . . . . . . . . . . . . . . . . . . . . 6 Indices d"octane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fabrique de pièces détachées . . . . . . . . . . . . . . . . . . . . . . . . . 13 Plan de production de moteurs . . . . . . . . . . . . . . . . . . . . . . . . 15 Excavation et matériaux de carrière . . . . . . . . . . . . . . . . . . . . . . 17

2 Dualité 19

Main d"oeuvre et équipements . . . . . . . . . . . . . . . . . . . . . . . . 19 Trois techniques de production . . . . . . . . . . . . . . . . . . . . . . . . 21

Production en heures-machines . . . . . . . . . . . . . . . . . . . . . . . . 221 Programmation linéaire

Corrigé ex. 1 : Méthode du simplexe

Programme 1

8 >>>>>:Max(x1+ 2x2) x

1+ 3x221

x1+ 3x218 x 1x25 x

1etx20

On introduit des variables d"écart, ce qui conduit aux équations suivantes pour les contraintes du problème : 8>< :x

1+ 3x2+x3= 21

x1+ 3x2+x4= 18 x

1x2+x5= 5

Le premier tableau du simplexe s"écrit :

1 x

1x2x3x4x51 3 1 0 021x

3-1 3 0 1 018x

41 -1 0 0 15x

5-1 -2 0 0 00

La variable entrante estx2qui correspond à l"élément le plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne dex2(colonne entrante) : Min 213
;183 =183 = 6 Doncx4est la variable sortante. La ligne dex4sert de ligne pivot et on exécute une transformation du pivot autour de la valeur 3 (à l"intersection de la ligne dex4et de la colonne dex2).

On obtient le tableau suivant :

x

1x2x3x4x52 0 1 -1 03x

3-1/3 1 0 1/3 06x

22/3 0 0 1/3 111x

5-5/3 0 0 2/3 012

Maintenant c"estx1qui entre etx3qui sort car :

Min 32
;112=3 =32 Un nouveau pivot autour du nombre 2 (à l"intersection de la ligne dex3et de la colonne dex1) conduit au tableau suivant : x

1x2x3x4x51 0 1/2 -1/2 03/2x

10 1 1/6 1/6 013/2x

20 0 -1/3 2/3 110x

50 0 5/6 -1/6 029/2

Maintenant c"estx4qui entre etx5qui sort car :

Min

13=21=6;102=3

=102=3= 15 Un nouveau pivot autour du nombre 2/3 (à l"intersection de la ligne dex5et de la colonne dex4) conduit au tableau suivant : x

1x2x3x4x51 0 1/4 0 3/49x

10 1 1/4 0 -1/44x

20 0 -1/2 1 3/215x

40 0 3/4 0 1/417

2 Ce tableau correspond à l"optimum car il n"y a plus de termes négatifs dans la dernière ligne. On obtient donc comme solution :

8>>>>>><

>>>>>:x 1= 9 x 2= 4 x 3= 0 x 4= 15 x 5= 0 La première et la troisième contrainte sont saturées.

Programme 2

8 >>>>>:Min(x13x2)

3x12x27

x1+ 4x29

2x1+ 3x26

x

1etx20

On transforme le problème en une maximisation en changeant le signe de la fonc- tion objectif :

Max(x1+ 3x2)

On introduit ensuite les variables d"écart comme ceci : 8>>>< >>:3x12x2+x3= 7 x1+ 4x2+x4= 9

2x1+ 3x2+x5= 6

x

1etx20

Le tableau de départ pour la méthode du simplexe est donc : x

1x2x3x4x53 -2 1 0 07x

3-1 4 0 1 09x

4-2 3 0 0 16x

51 -3 0 0 00

La variable entrante estx2qui correspond à l"élément le plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne dex2(colonne entrante) : Min 94
;63 =63 = 2 Doncx5est la variable sortante. La ligne dex5sert de ligne pivot / on exécute une transformation du pivot autour de la valeur 3 (à l"intersection de la ligne dex5et de la colonne dex2).

Cela conduit au tableau suivant :

3 x

1x2x3x4x55/3 0 1 0 2/311x

35/3 0 0 1 -4/31x

4-2/3 1 0 0 1/32x

2-1 0 0 0 16

Cette fois la variablex1entre dans la base et la variablex4sort car : Min

115=3;15=3

=35 Le pivot se fait autour de la valeur 5/3 (à l"intersection de la ligne dex4et de la colonne dex1). On obtient alors le tableau suivant : x

1x2x3x4x50 0 1 -1 210x

31 0 0 3/5 -4/53/5x

10 1 0 2/5 -1/512/5x

20 0 0 3/5 1/533/5

Il n"y a plus de terme négatif dans la dernière ligne et on est donc à l"optimum. La solution est :

8>>>>>><

>>>>>:x

1= 3=5

x

2= 12=5

x 3= 10 x 4= 0 x 5= 0 La deuxième et la troisième contrainte sont saturées. Il ne faut pas oublier de re- changer le signe de la fonction objectif : la valeur à l"optimum est -33/5 (alors que la case inférieure droite du tableau indique 33/5 car ce tableau correspond à la maximisa- tion def).Corrigé ex. 2 : Raffinerie de pétrole On désigne parx1etx2les quantités de brut 1 et 2 qu"il faut traiter. La fonction objectif est la marge totale, qu"il faut maximiser :

Max (3x1+ 4x2)

Les contraintes de production s"expriment sous la forme suivante : 8>< :0;25x1+ 0;35x2825

0;30x1+ 0;30x2750

0;45x1+ 0;35x21065

qui se simplifient sous la forme suivante : 8>< :5x1+ 7x216500 x

1+x22500

9x1+ 7x221300

4 Si on notex3,x4,x5les variables d"écart, les contraintes deviennent : 8>< :5x1+ 7x2+x3= 16500 x

1+x2+x4= 2500

9x1+ 7x2+x5= 21300

Les tableaux du simplexe sont successivement :

Tableau 1

x

1x2x3x4x55 7 1 0 016500x

31 1 0 1 02500x

49 7 0 0 121300x

5-3 -4 0 0 00

x

2entre etx3sort.

Tableau 2

x

1x2x3x4x55/7 1 1/7 0 016500/7x

22/7 0 -1/7 1 01000/7x

44 0 -1 0 14800x

5-1/7 0 4/7 0 066000/7

x

1entre etx4sort.

Tableau 3

x

1x2x3x4x50 1 1/2 -5/2 02000x

21 0 -1/2 7/2 0500x

10 0 1 -14 12800x

50 0 1/2 1/2 09500

Il n"y a plus de terme négatif dans la dernière ligne et on est donc à l"optimum. La solution est :

8>>>>>><

>>>>>:x

1= 500

x

2= 2000

x 3= 0 x 4= 0 x

5= 2800

La valeur à l"optimum estf= 9500. La première et le deuxième contrainte sont saturées : les quotas imposés pour l"essence et le gasoil sont atteints. La troisième

présente un écart de 140 (le tableau indique 2800 mais cette contrainte avait été divisée

par 20 avant d"être insérée dans le tableau) : cela signifie que le quota de 1065 imposé sur le fuel n"est pas atteint et qu"on fabrique seulement1065140 = 925milliers de m

3de fuel.

5 Corrigé ex. 3 : Méthode des variables ajoutées Les deux programmes d"optimisation de cet exercice présentent une difficulté sup- plémentaire pour appliquer la méthode du simplexe : on ne peut pas démarrer le sim-

plexe à partir de l"origine (c"est-à-dire à partir du point de coordonnées nulles) car ce

point ne vérifie pas les contraintes. L"origine ne fait pas partie du domaine réalisable. Il faut donc trouver un point de départ dans le domaine réalisable, autrement dit trouver un pointà coordonnées positivesqui vérifie les équations des contraintes. On utilise pour cela la méthode des variables ajoutées. Elle consiste à introduire des va- riables supplémentairesx1;a;x2;a;:::dans les contraintes et à chercher à les annuler. Comme ce sont des variables positives, il suffit d"annuler leur somme et on en fait un problème d"optimisation en fixant comme objectif de minimiser cette somme : Min X jx j;a Il y a autant de variables ajoutées qu"il y a de contraintes.

Programme 1

8 >>>:Max(x1x2+x3)

3x1+ 2x2+x3= 1

x

1x2x3+x4= 3

x

1+ 4x2+ 2x32x4= 1

x

1;x2;x3etx40

On introduit 3 variables positivesx1;a;x2;a;x3;adans les contraintes et on cherche à minimiser la fonction objectifx1;a+x2;a+x3;a. On se ramène à un problème de maximisation en changeant le signe de cette fonction objectif. Le problème s"écrit donc sous la forme suivante

Max(x1;ax2;ax3;a)8<

:3x1+2x2+x3+x1;a= 1 x

1x2x3+x4+x2;a= 3

x

1+4x2+2x32x4+x3;a= 1

avec les contraintes x

1;x2;x3;x4;x1;a;x2;a;x3;a0

quotesdbs_dbs8.pdfusesText_14
[PDF] examen recherche opérationnelle corrigé

[PDF] exercice corrigé methode simplexe pdf

[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] multiplicateur des dépenses publiques macroéconomie

[PDF] fonction de cobb douglas pdf

[PDF] revenu d'équilibre et revenu de plein emploi

[PDF] fonction cobb douglas ses