[PDF] Compléments sur les limites asymptotes et continuité - Lycée d





Previous PDF Next PDF



Limites et asymptotes

Limites et asymptotes. I. Limites en l'infini. 1) Limite infinie à l'infini. Définition 1 : Soit f une fonction définie au moins sur un intervalle du type 



Limites asymptotes EXOS CORRIGES

3) En déduire la limite de la fonction f en +? . Exercice n°12. On considère la fonction numérique f définie par ( ) 2 sin. f x x.



Limites de fonctions et asymptotes - Exercices Fiche 2

Déterminer la limite de f en + et en - . 4. Montrer que la courbe C f représentative de la fonction f admet une asymptote en + et en - .



LIMITES DES FONCTIONS

Remarque : Lorsque tend vers +? la courbe de la fonction "se rapproche" de son asymptote. 2) Limite infinie à l'infini. Intuitivement : On dit que la 



Limites de fonctions et asymptotes - Exercices Fiche 1

Justifier que la courbe représentative de f admet une asymptote que vous déterminerez en +? et en -?. Exercice 7: Déterminer les limites suivantes: 1. lim x  



Fiche technique sur les limites

1 Fonctions élémentaires La droite y = l est asymptote horizontale à Cf ... Théorème 2 Une fonction rationnelle a même limite en +? et ?? que son ...





Compléments sur les limites asymptotes et continuité - Lycée d

27 févr. 2017 2 Limite en l'infini des polynômes et fonctions rationnelles ... La droite ? d'équation y = ? est dite asymptote horizontale à Cf en +?.



Feuille dexercices : Limites de fonctions

Exercice 6 : Détermination d'asymptotes à partir de limites. Que peut-on dire des limites suivantes concernant les asymptotes horizontales ou verticales ? a) 



Limites et asymptotes

fonction f admet une asymptote verticale d'équation x = a. IV) Théorèmes sur la limite d'une somme d'un produit de deux fonctions. Dans tout ce 

DERNIÈRE IMPRESSION LE27 février 2017 à 16:09

Compléments sur les limites,

asymptotes et continuité

Table des matières

1 Limites finies ou infinies en l"infini2

1.1 Limites finies à l"infini. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Limites infinies en l"infini. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Limites infinies en un point. . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Limite finie en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Limites à droite, à gauche. . . . . . . . . . . . . . . . . . . . . . . . 5

2 Limite en l"infini des polynômes et fonctions rationnelles6

2.1 Limite en l"infini d"un polynôme. . . . . . . . . . . . . . . . . . . . 6

2.2 Limite en l"infini d"une fonction rationnelle. . . . . . . . . . . . . . 6

3 Asymptote oblique7

4 Limites indéterminées avec des radicaux9

4.1 Une simple indétermination. . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Une double indétermination. . . . . . . . . . . . . . . . . . . . . . . 11

5 Continuité12

5.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Règles opératoires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Conséquences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

PAUL MILAN1VERS LE SUPÉRIEUR

1. LIMITES FINIES OU INFINIES EN L"INFINI

1 Limites finies ou infinies en l"infini

1.1 Limites finies à l"infini

Dire qu"une fonctionfa pour limite

?en+∞, signifie que tout intervalle ouvert centré en?, contient toutes les valeurs def(x)pourxassez grand - c"est à dire pour lesxd"un intervalle ]A;+∞[.Aétant à déterminer.

On obtient une définition plus rigou-

reuse avec des quantificateurs : A xOC fΔ Définition 1 :Soit une fonctionfdéfinie surD=]a;+∞[.

On écrira lim

x→+∞f(x)=?ou lim+∞f=?si, et seulement si, ??>0,?A>0,?x?D,x>A? |f(x)-?|Exemple :Montrons que limx→+∞2x-1x+1=2. ?2x-1 x+1-2???? =????2x-1-2x-2x+1???? =????-3x+1???? ?3xet3x3?. d"où ??>0,?A=3 ?,?x?]0 ;+∞[,x>A?????2x-1x+1-2???? Définition 2 :Soit une fonctionfdéfinie surD=]-∞;b[.

On écrira lim

x→-∞f(x)=?ou lim-∞f=?si, et seulement si, ??>0,?B<0,?x?D,xPAUL MILAN2VERS LE SUPÉRIEUR

1. LIMITES FINIES OU INFINIES EN L"INFINI

1.2 Limites infinies en l"infini

Dire qu"une fonctionfa pour limite

+∞en+∞, signifie que tout intervalle ]M;+∞|contient toutes les valeurs de f(x)pourxassez grand - c"est à dire pourx?]A;+∞[,Aétant à déterminer.

On obtient une définition plus rigou-

reuse avec des quantificateurs : A]M Cf O Définition 3 :Soit une fonctionfdéfinie surD=]a;+∞[.

On écrira lim

x→+∞f(x)=+∞ou lim+∞f=+∞si, et seulement si, ?M>0,?A>0,?x?D,x>A?f(x)>M "Pour tout réel positif M (aussi grand soit-il), on peut trouver un réel positif A tel que pour tout x de D supérieur à A alors f(x)est supérieur à M ». Exemple :Montrons que limx→+∞lnx= +∞ La fonction ln est définie sur]0 ;+∞[. SoitM>0. lnx>M?x>eM, on a donc ?M>0,?A=eM,?x?]0 ;+∞[,x>A?lnx>M Définition 4 :On définit de façon analogue : •Soit une fonctionfdéfinie surD=]a;+∞[.

On écrira lim

x→+∞f(x)=-∞ou lim+∞f=-∞si, et seulement si, ?m<0,?A>0,?x?D,x>A?f(x)On écrira lim x→-∞f(x)=+∞ou lim-∞f=+∞si, et seulement si, ?M>0,?B<0,?x?D,xM •Soit une fonctionfdéfinie surD=]-∞;b[.

On écrira lim

x→-∞f(x)=-∞ou lim-∞f=-∞si, et seulement si, ?m<0,?B<0,?x?D,xPAUL MILAN3VERS LE SUPÉRIEUR

1. LIMITES FINIES OU INFINIES EN L"INFINI

1.3 Limites infinies en un point

Dire qu"une fonctionfa pour limite

+∞ena, signifie que tout intervalle ]M;+∞|contient toutes les valeurs de f(x)pourxassez proche dea- c"est à dire pour lesxd"un intervalle ouvert de rayonηcontenanta. Le rayonηétant à déterminer

On obtient une définition plus rigou-

reuse avec des quantificateurs a[]C fM O Définition 5 :Soit une fonctionfdéfinie surD=]b;a[?]a;c[.

On écrira lim

x→af(x)= +∞ou limaf= +∞si, et seulement si, ?M>0,?η>0,?x?D,|x-a|<η?f(x)>M "Pour tout réel positif M (aussi grand soit-il), on peut trouver un réel positifηtel que pour tout x de D dans]a-η;a+η[alors f(x)est supérieur à M ». La droiteΔd"équationx=aest diteasymptote verticaleàCfau pointa. Remarque :L"intervalleD=]b;a[?]a;c[est appelévoisinagedea. La fonction fdoit être définie dans un voisinage deatout en étant non définie ena.

Exemple :Montrer que limx→12x+1

(x-1)2= +∞

Pourx>0 etx?=1, on a2x+1

(x-1)2?1(x-1)2et 1 (x-1)2>M?(x-1)2<1M? |x-1|<1⎷M, on a donc : ?M>0,?η=1 ⎷M,?x?D,|x-1|<η?f(x)>M Définition 6 :Soit une fonctionfdéfinie surD=]b;a[?]a;c[.

On écrira lim

x→af(x)=-∞ou limaf=-∞si, et seulement si, ?m<0,?η>0,?x?D,|x-a|<η?f(x)"Pour tout réel négatif m (aussi grand négatif soit-il), on peut trouver un réel positifη

tel que pour tout x de D dans]a-η;a+η[alors f(x)est inférieur à m ». La droiteΔd"équationx=aest diteasymptote verticaleàCfau pointa.

PAUL MILAN4VERS LE SUPÉRIEUR

1. LIMITES FINIES OU INFINIES EN L"INFINI

1.4 Limite finie en un point

Dire qu"une fonctionfa pour limite?

ena, signifie que tout intervalle ouvert centré en?contient toutes les valeurs def(x)pourxassez proche dea- c"est

à dire pour lesxd"un intervalle ouvert

à déterminer.

On obtient une définition plus rigou-

reuse avec des quantificateurs a? O Définition 7 :Soit une fonctionfdéfinie surD=]b;a[?]a;c[.

On écrira lim

x→af(x)=?ou limaf=?si, et seulement si, ??>0,?η>0,?x?D,|x-a|<η? |f(x)-?|1.5 Limites à droite, à gauche Définition 8 :Soitfune fonction définie sur un voisinageDdea. On dit que fadmet une limite : •A droite dea, notée limx→ax>af(x)ou limx→a+f(x)ou lima+f, si et seulement si : limite finie?:??>0,?η>0,?x?D,a0,?η>0,?x?D,a-η•Pourx>1 etM>0,3x-1>M?x-1<3M?x<1+3M, d"où : ?M>0,?η=3

M,?x?D, 1M

PAUL MILAN5VERS LE SUPÉRIEUR

2. LIMITE EN L"INFINI DES POLYNÔMES ET FONCTIONS RATIONNELLES

•Pourx<1 etm<0,3x-13m?x>1+3m, d"où :

?m<0,?η=-3 m,?x?D, 1-η2 Limite en l"infini des polynômes et fonctions ra- tionnelles

2.1 Limite en l"infini d"un polynôme

Théorème 1 :Un polynôme a même limite en+∞et en-∞que son monôme du plus haut degré.

SiP(x) =n∑

i=0a ixi=anxn+an-1xn-1+···+a0alors lim x→+∞P(x) =limx→+∞anxnet limx→-∞P(x) =limx→-∞anxn Démonstration :On met en facteur le monôme du plus haut degré,an?=0 :

P(x) =n∑

i=0a ixi=anxn?

1+n-1∑

i=0a i an×1xn-i? or?i??0 ;n-1?, limx→+∞1 xn-i=limx→-∞1xn-i=0, d"où par somme et produit : lim x→+∞P(x) =limx→+∞anxnet limx→-∞P(x) =limx→-∞anxn Exemple :Limites en+∞et-∞du polynômePtel que :P(x) =4x3+2x2+4

On a : lim

x→+∞P(x) =limx→+∞4x3= +∞et limx→-∞P(x) =limx→-∞4x3=-∞

2.2 Limite en l"infini d"une fonction rationnelle

Théorème 2 :Une fonction rationnelle a même limite en+∞et-∞que son monôme du plus degré de son numérateur sur celui de son dénominateur.

Sif(x) =n∑

i=0a ixi m∑ j=0b lim x→+∞f(x) =limx→+∞a nxn bmxmet limx→-∞f(x) =limx→-∞a nxnbmxm

PAUL MILAN6VERS LE SUPÉRIEUR

3. ASYMPTOTE OBLIQUE

Démonstration :On met en facteur les monômes du plus haut degré du nu- mérateur et du dénominateur,an?=0,bm?=0 f(x) =n∑ i=0a ixi m∑ j=0b jxj=a nxn?

1+n-1∑

i=0a i an×1xn-i? bmxm?

1+m-1∑

j=0b jbm×1xm-j? •?i??0 ;n-1?, limx→+∞1xn-i=limx→-∞1xn-i=0, •?j??0 ;m-1?, limx→+∞1xm-j=limx→-∞1xm-j=0, parsomme,produit,quotient: lim x→+∞f(x) =limx→+∞a nxn bmxmet limx→-∞f(x) =limx→-∞a nxnbmxm

Exemple :

•Déterminer la limite en+∞de la fonctionfdéfinie par :f(x) =2x2-3x+6x-1. lim x→+∞f(x) =limx→+∞2x2 x=limx→+∞2x= +∞ •Déterminer la limite en-∞de la fonctiongdéfinie par :g(x) =4x2+3x-53x2-1 lim x→-∞g(x) =limx→-∞4x2

3x2=limx→-∞43=43

3 Asymptote oblique

Définition 9 :Une courbeCfreprésentant une fonctionfadmet uneasymp- tote obliqued"équationy=ax+ben+∞ou en-∞si et seulement si : lim x→+∞[f(x)-(ax+b)]=0 ou limx→-∞[f(x)-(ax+b)]=0 Remarque :La courbe se rapproche de plus en plus de la droite asymptote lorsquexdevient de plus en plus grand soit en valeur positive soit en valeur négative. Exemple :On obtient la courbeCfet son asymptotedsuivantes : O Cf d

PAUL MILAN7VERS LE SUPÉRIEUR

3. ASYMPTOTE OBLIQUE

Théorème 3 :Dans une fonction rationnellef, lorsque le degré du polynôme du numérateurnet celui de son dénominateurmsont tels quen=m+1, alors la courbe représentativeCfadmet une asymptote obliqueden+∞et-∞.

Soitf(x) =P(x)

Q(x)etd◦P=d◦Q+1

Soit la droite d d"équationy=ax+balors limx→∞[f(x)-(ax+b)] =0 Exemple :Soit la fonction définie surR-{-1}par :f(x) =2x2-3x+1x+1 Déterminer l"asymptote oblique deCfen+∞et-∞. On précisera de plus la position de la courbe par rapport à l"asymptote. Le numérateur de la fonctionfest de degré 2 et celui de son dénominateur est de degré 1, donc la courbeCfadmet une asymptote en+∞et en-∞. Pour déterminer cette asymptote, il faut décomposerfen éléments simples. Dé- terminons les coefficienta,betctel que :f(x) =ax+b+c x+1. Il y a deux méthode pour déterminer ces coefficients.

•1reméthode : par identification

On réduit la deuxième forme au même dénominateur puis on identifie à la première forme. f(x) =(ax+b)(x+1) +c x+1=ax2+ax+bx+b+cx+1=ax2+ (a+b)x+b+cx+1 Par identification, on obtient le système suivant : ?a=2 a+b=-3 b+c=1??????a=2 b=-5 c=6soitf(x) =2x-5+6 x+1

•2eméthode : par division euclidienne

On effectue une division en basex. On a alors :

2x2-3x+1

x+1 -2x2-2x

0x2-5x+1

+5x+5 0x+6

2x-5On a alors :f(x) =2x-5+6x+1

Montrons maintenant que la droite d"équationy=2x-5 est asymptote à la courbe defen+∞et-∞. On calcule :f(x)-(2x-5) =6 x+1.

PAUL MILAN8VERS LE SUPÉRIEUR

4. LIMITES INDÉTERMINÉES AVEC DES RADICAUX

limx→+∞x+1= +∞donc par quotient limx→+∞6x+1=0 lim x→-∞x+1=-∞donc par quotient limx→-∞6 x+1=0, d"où limquotesdbs_dbs47.pdfusesText_47
[PDF] limite de fonctions indéfinies

[PDF] limite de fontion vraie ou fausse

[PDF] Limite de la création monétaire - Compensation bancaire

[PDF] Limite de la fontcion Ln

[PDF] LIMITE DE ln

[PDF] limite de ln pdf

[PDF] limite de n

[PDF] limite de propriété cloture

[PDF] limite de q^n

[PDF] limite de référence terminale s

[PDF] limite de suite

[PDF] limite de suite géométrique

[PDF] limite de suite limite aide svp urgent

[PDF] limite de suite terminale s cours

[PDF] limite de suites et operations