[PDF] Exercices de probabilités avec éléments de correction Memento





Previous PDF Next PDF



5. Quelques lois discrètes

1/5. 2/5. 3/5. 4/5. 5/5. Loi de Bernoulli (suite). Théor`eme. La fonction de répartition d'une variable X ? Bernoulli(p) est.



Chapitre 2 - Variables Aléatoires

Fonction de Repartition de Y. 1.2 Lois discrètes usuelles. Loi de Bernoulli B (p)



Simulation de variables aléatoires

2.2 Loi de Bernoulli . On notera FX la loi (i.e. la fonction de répartition) d'une variable aléatoire X et si elle existe



Exercices de probabilités avec éléments de correction Memento

Fonction de répartition (si d = 1) : FX(t) = P(X ? t) t ? R Loi de Bernoulli B(p) ... Vérifier que cette fonction définit bien une densité.



Probabilités et variables aléatoires

lois les plus utilisées sont décrites : discrètes de Bernoulli; bino- Calculons la fonction de répartition de X. Comme X est positive on a.



Exercices de Probabilités

1 Introduction aux probabilités. 2. 2 V.a.r espérance



De la loi de Bernoulli à la loi normale en suivant le programme de

D'après le TCL on a la cvce en loi suivante : U = ? n. S/n ? p. ?p(1 ? p) ? N(01)



Lois de probabilité. Lois discrètes. Lois à densité.

Si X est une variable aléatoire réelle sa fonction de répartition est la fonction Loi de Bernoulli



Simulation des variables aléatoires Simulation par la méthode d

13 mars 2020 Exemple de fonction de répartition: • Pour l'expérience de lancement d'une pièce de monnaie on a la loi de probabilité de X est résumée.



Cours et exercices corrigés en probabilités

2.3 Fonction de répartition d'une v.a. discrète . On dit dans ce cas que la v.a. X suit une loi de Bernoulli de paramètre p =.



[PDF] 5 Quelques lois discrètes - GERAD

Si X suit une loi de Bernoulli de param`etre p alors on note La fonction de répartition d'une variable X ? Bernoulli(p) est



[PDF] De la loi de Bernoulli à la loi normale en - IREM dAix-Marseille

ce qui signifie que la fonction de répartition P(U ? u) converge vers la fonction de répartition d'une loi normale P(N(01) ? u)



[PDF] De la loi de Bernoulli à la loi normale en - IREM dAix-Marseille

ce qui signifie que la fonction de répartition P(U ? u) converge vers la fonction de répartition d'une loi normale P(N(01) ? u)



[PDF] MODULE 7 LOIS PROBABILITÉ PROBABILITÉ - Université du Québec

Pour utiliser la fonction de probabilité de la loi binomiale il faut déterminer la valeur du paramètre ? 1 Ce calcul peut se faire à la calculatrice mais il 



[PDF] 1 Loi Uniforme 2 Loi de Bernouilli

Représenter la fonction de répartition de X 2 De façon générale on dit que X suit une loi de Bernoulli de paramètre p et on note X ? B(p) si X



[PDF] Correction TD no 3

On note dans cette exercice F la fonction de répartition d'une loi N(0 1) Remarque: pour tout t ? R F(t)=1 ? F(?t) En effet si Y est une variable 



[PDF] Variables Aléatoires

1 Loi de probabilité Fonction de répartition Une variable aléatoire X de Bernoulli est une variable qui ne prend que deux valeurs : l'échec



[PDF] Fonction de répartition et densité

Fonction de répartition et densité Définition 1 La fonction de répartition (f d r ) de la variable aléatoire X sur R est la fonction suivante :



[PDF] Chapitre 4: Lois de probabilités

La Fonction de répartition de la loi normale réduite permet d'obtenir les probabilités associées à toutes variables aléatoires normales (µ ) après 



[PDF] Cours et exercices corrigés en probabilités - ese-orandz

Déterminer la loi de probabilité de la v a Y et donner sa fonction de répartition Corrigé exercice 2 2 1 Déterminer la loi de probabilité de la v a X : ? 

  • Comment définir la fonction de répartition ?

    b - Représentation graphique de la fonction de répartition F de X : F(x) = 1 - 1/x2 sur [1,+?[. C'est une fonction strictement croissante (de dérivée f), nulle en 1 et admettant y = 1 comme asymptote horizontale à l'infini.
  • Comment expliquer la loi de Bernoulli ?

    De manière générale, la loi de Bernoulli est la loi de la variable aléatoire qui code le résultat d'une épreuve qui n'admet que deux issues (épreuve de Bernoulli) : 1 pour « succès », 0 pour « échec », ou quel que soit le nom qu'on donne aux deux issues d'une telle expérience aléatoire.
  • Comment montrer que deux variables suivent la même loi ?

    On dit que deux variables aléatoires X et Y ont la même loi si elles ont la même fonction de répartition FX = FY . Remarque 1.2 Soit I un intervalle de R. L'événement {X ? x} représente l'ensemble des valeurs ? ? ? telles que X(?) soit inférieur à x, i.e.{X ? x} = {? ? ? : X(?) ? x}.
  • Pour lire la table, il faut connaître deux paramètres: le nombre total d'essais (N) et la probabilité d'obtenir un succès sur un essai particulier (p). Tous les essais doivent être identiques, de telle façon que la probabilité p ne change pas au cours des N essais.
Université Paris 13, Institut Galilée Préparation à l"agrégation

Année universitaire 2013-2014

Exercices de probabilités

avec éléments de correctionMemento

Fonctions associées aux lois

PourXvariable aléatoire à valeurs dansRd,

F onctionde répartition (si d= 1) :FX(t) =P(Xt),t2R F onctiongénératrice (si Xà valeurs dansN) :GX(s) =E[sX] =P1 n=0P(X=n)sn,s2 j R;Rj T ransforméede Laplace : LX() =E[eh;Xi]2]0;+1],2Rd F onctioncaractéristique : X(t) =E[eiht;Xi]2C,t2Rd Lois discrètesNomParamètresSupportDéfinition :P(A) =P

a2Ap(a)Loi de Diracaa2Rfagp(a) = 1Loi de BernoulliB(p)p2[0;1]f0;1gp(0) = 1p,p(1) =pLoi binomialeB(n;p)n2N,p2[0;1]f0;:::;ngp(k) =n

kpk(1p)nkLoi géométriqueG(p)p2]0;1]N p(k) = (1p)k1pLoi de PoissonP()2]0;+1[Np(k) =ekk!Lois continues

NomParamètresSupportDéfinition :P(A) =R

Af(x)dxLoi uniformeU([a;b])a < b[a;b]f(x) =1ba1[a;b](x)Loi exponentielleE()2]0;1[]0;+1[f(x) =ex1]0;+1[(x)Loi de Cauchya2]0;+1[Rf(x) =a(a2+x2)Loi normale/gaussienneN(m;2)m2R; 22]0;+1[Rf(x) =1p22exp

(xm)222Déterminer des lois : exemples

Exercice 1.Lois binomiale et géométrique

SoitX1;X2;:::une suite de variables aléatoires indépendantes et de loiB(p)oùp2[0;1].

1.On supposep >0. On définitN= inffn1jXn= 1g.

1.a)Montrer queP(N=1) = 0et queNsuit la loi géométrique de paramètrep.

1.b)Calculer l"espérance et la variance deN.

2.Soitn1. On définitSn=X1++Xn.

2.a)Montrer queSnsuit la loi binomiale de paramètresnetp, par une preuve directe puis en utilisant des

fonctions génératrices.

2.b)Calculer l"espérance et la variance deSn(utiliser la définition deSn).

Exercice 2.Minimum et maximum d"une famille de variables aléatoires exponentielles

SoitX;Ydeux variables aléatoires indépendantes de lois respectivesE()etE(). À l"aide de fonctions de

répartition, déterminer les lois deU= min(X;Y)etV= max(X;Y). On précisera leur densité (le cas échéant).

Exercice 3.Somme de variables aléatoires

1.SoitX;Ydes variables aléatoires indépendantes de loisP()etP(). Déterminer la loi deX+Y, directement

puis via les fonctions génératrices.

2.SoitX;Ydes variables aléatoires indépendantes de loi de Cauchy de paramètreaetb. À l"aide des fonctions

caractéristiques, déterminer la loi deX+Y.Pour obtenirX, on pourra utiliser la formule de Cauchy avec un

contour bien choisi, ou alors avoir l"idée de calculer la fonction caractéristique de la loi de Laplace

a2 eajxjdx et utiliser la formule d"inversion.

Exercice 4.Lois images

1.SoitXune variables aléatoire de loiE(). Déterminer la loi debXc+ 1.C"est une loi géométrique.

2.SoitUune variable aléatoire de loiU([1;1]). Déterminer la loi dearcsin(U).

3.SoitXde loiN(0;1). Déterminer la loi dejXj.

1

4.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). Déterminer la loi deXY

. En déduire la loi de 1Z siZsuit une loi de Cauchy de paramètre 1.

5.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). On définit les variables aléatoiresR;par

(X;Y) = (Rcos;Rsin),R >0et2[0;2[. Montrer queRetsont indépendantes et déterminer leurs lois.

Exercice 5.Loi Gamma

Poura >0et >0, on définit la loi

a;par sa densité relativement à la mesure de Lebesgue : f a;(x) =a(a)xa1ex1R+(x):

1.Vérifier que cette fonction définit bien une densité.

2.Déterminer l"espérance de cette loi.On utilise le fait que(a+ 1) =a(a)pour obtenir que l"espérance de cette loi esta=.

3.SoitV1;V2;:::;Vndes variables aléatoires réelles indépendantes de loiE(). Déterminer la loi du vecteur

(V1;V1+V2;:::;V1++Vn)et en déduire queV1++Vn n;.Pourn= 1, ok. Supposonsn2etS:=V1+:::+Vn1de loi n1;. Soitgune fonction mesurable bornée deRdansR. On a

E(g(V1+:::+Vn)) =E(g(S+Vn)) =Z

R g(x+y)dP(S;Vn)(x;y) et

E(g(V1+:::+Vn)) =Z

R g(t)dPV1+:::+Vn(t): Commef(v1;:::;vn1) =v1+:::+vn1etg(vn) =v2nmesurables on en déduit queSetVnsont indépen- dantes car(V1;:::;Vn1)etVnle sont, Z R g(x+y)dP(S;Vn)(x;y) =Z 1 0 dxZ 1 x dtg(t)n1(n1)etxn2 Z 1 0 g(t)n1(n1)etxn1=(n1)t 0dt Z R g(t)n(n)exp(t)tn11R+(t)dt

4.SoitXetYdeux variables aléatoires réelles indépendantes de loi

a;.

4.a)Déterminer la loi deX.On peut utiliser la fonction de répartition. Avec un changement de variable on voit queX

a;1.

4.b)Montrer queX+YetX=Ysont des v.a. indépendantes dont on calculera les lois.Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=Y)) =Z

R

2g(u;v)dP(X+Y;X=Y)(u;v)

et

E(g(X+Y;X=Y)) =Z

R

2gf(x;y)dP(X;Y)(x;y)

oùf(x;y) = (x+y;x=y)définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes, le couple(X;Y)a pour densitédPX(x)dPY(y)par rapport à la mesure de Lebesgue surR2. On fait alors le changement de variableu=x+y,v=x=y, pourx >0ety >0; Ceci est équivalent àx=uv=(v+ 1)ety=u=(v+ 1)pouru >0etv >0.

On a de plusjJ(u;v)j=v=(v+ 1)u=(v+ 1)

1=(v+ 1)u=(v+ 1)2

=u(v+ 1)2. Il suit

E(g(X+Y;X=Y)) =Z

R

2g(u;v)u2a1eu1u>0va1(v+ 1)2a1v>02a(a)2dudv:

2 Les variables sont indépendantes,dPX+Y(u) =2a(2a)u2a1eu1u>0duetdPX=Y(v) = (2a)(a)2v a1(v+ 1)2a1v>0dv.

4.c)Montrer queX+YetX=(X+Y)sont des v.a. indépendantes. Calculer la loi deX=(X+Y).Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=(X+Y))) =Z

R

2g(u;v)dP(X+Y;X=(X+Y))(u;v)

et

E(g(X+Y;X=(X+Y))) =Z

R

2gf(x;y)dP(X+Y;X=(X+Y))(x;y)

oùf(x;y) = (x+y;x=(x+y))définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes,

le couple(X;Y)a pour loidPXdPY=fa;(x)fa;(y)dxdy. On fait alors le changement de variableu=x+y,v=x=(x+y), pourx >0ety >0; Ceci est équivalent àx=uvety=u(1v)pouru >0etv2(0;1).

On a de plusjJ(u;v)j=v u

1vu =u. Il suit

E(g(X+Y;X=(X+Y))) =Z

R Les variables sont donc indépendantes et on a de plusdPX=(X+Y)(v) =(2a)(a)2(v(1v))a1105.SoitXetYdeux variables aléatoires réelles indépendantes de loi a;et b;respectivement. Déterminer la loi deX+Y.Le seul point délicat est de calculer Rt

0xa1(tx)b1dx=ta+b1R1

0ya1(1y)b1dy=ta+b1Ca;b. La

constanteCa;best forcément égale à(a)(b)=(a+b)en tenant compte de la normalisation.

6.SoitZ1;Z2;:::;Zndes variables aléatoires réelles indépendantes de loiN(0;1).

6.a)Montrer queZ21suit une loi

1=2;1=2.SiZ1est de loiN(0;1)etgune fonction mesurable bornée deRdansR, on a

E(g(X2)) =Z

R g(u)dPX2(u)E(g(X2)) =Z R g(x2)dPX(x) =1p2Z R g(x2)ex2=2dx:

Par parité dex7!g(x2)ex2=2on aE(g(X2)) =2p2R

1

0g(x2)ex2dx=2p2R

1

0g(y)ey=2dy2

py donc dP

X2(y) =1p2ey=2y1=21R+(y)dy.

6.b)Montrer queZ21++Z2nsuit une loi

n=2;1=2.La loi n=2;1=2est également appelée loi du khi-deux àn

degrés de liberté, notée2n.On le montre par récurrence. Pourn= 1c"est vrai. Supposons queSn1=Z21+:::+Z2n1

n12 ;12 et Z n N(0;1). On aSn=Sn1+Z2n. Commef(z1;:::;zn1) =z21+:::+z2n1etg(xn) =z2nmesurables on

en déduit queSn1etZ2nsont indépendantes car(Z1;:::;Zn1)etZnle sont. On utilise ensuite la question

5 donnant queSnsuit une

n12 +12 ;12 n2 ;12

Propriétés générales

Exercice 6.Conséquences du théorème de Fubini, fonctions indicatrices

Résoudre les questions suivantes en appliquant le théorème de Fubini(-Tonelli) de la façon suggérée.

1.SoitNune variable aléatoire à valeurs dansN. Montrer que

E[N] =X

n1P(Nn): 3 On note que, commeNest à valeurs entières,N=PN k=11 =P1 k=11fkNg. Le théorème de Fubini-Tonelli donne

E[N] =E"

1X k=11 fkNg# =1X k=1E[1fkNg] =1X k=1P(kn):

Le théorème de Fubini est ici appliqué à la fonction(n;!)7!1fkN(!)gpar rapport à la mesure produit

m N P, oùmNest la mesure de comptage surN:mN(A) = Card(A)siAN(et doncRfdmN=P n2Nf(n)

pourf:N!R). En l"occurrence, il est en fait plus simple de voir ceci comme une application du théorème

de convergence monotone pour les séries à termes positifs.

2.SoitXune variable aléatoire à valeurs dansR+, et >0. Montrer que

E[X] =Z

1 0 t1P(X > t)dt

et donner une généralisation de cette formule.On note que, commeX0, par " intégration de la dérivée »,X=RX

0t1dt=R1

01ft théorème de Fubini-Tonelli (pour la mesuredt

P) donne donc

E[X] =Z

1 0

E[1ft 1 0

P(X > t)t1dt:

Le principe de la preuve s"applique par exemple à toute fonctiongmonotone de classeC1de]0;+1[dans

R, pour laquelle on peut écrireg(X) =g(0) +RX

0g0(t)dt, d"où de même

E[g(X)] =g(0) +Z

1 0

P(X > t)g0(t)dt:

3.Soit(An)n1une suite d"événements.

3.a)On noteNle nombre (aléatoire) d"événéments parmi ceux-ci qui se produisent. CalculerE[N]en fonction

quotesdbs_dbs35.pdfusesText_40

[PDF] résultat d'une multiplication

[PDF] loi hypergéométrique calculatrice

[PDF] loi de bernoulli exemple

[PDF] nom resultat addition

[PDF] loi uniforme exemple

[PDF] variance loi uniforme démonstration

[PDF] fonction de répartition loi uniforme discrète

[PDF] variable statistique discrète

[PDF] la leçon (pièce de théâtre)

[PDF] ionesco la cantatrice chauve

[PDF] ionesco mouvement littéraire

[PDF] ionesco rhinocéros résumé

[PDF] fonction de service technologie 5ème

[PDF] fonction de service d'une maison

[PDF] fonction de contrainte