[PDF] Limites – Corrections des Exercices





Previous PDF Next PDF



Exercices corrigés - limites Exercices corrigés - limites

LIMITES – EXERCICES CORRIGES. Exercice n°1. Déterminer la limite éventuelle en Retrouver les limites de f(x) à partir du graphique connaissant les asymptotes.



1 Limites et comportement asymptotique Exercices corrigés 1 Limites et comportement asymptotique Exercices corrigés

(asymptote verticale et asymptote horizontale). • Exercice 2 : étude de limites asymptotes verticales et horizontales. • Exercice 3 : étude de limites de 



Limites de fonctions et asymptotes - Exercices Fiche 2 Limites de fonctions et asymptotes - Exercices Fiche 2

Déterminer la limite de f en + et en - . 4. Montrer que la courbe C f représentative de la fonction f admet une asymptote en + et en - .



Limites et asymptotes corrigés

= +∞. = −∞ : la droite d'équation. 3 x = est asymptote verticale à la courbe représentative de f. Exercice 8 : La courbe ci-dessous représente une fonction f 



I Exercices

Calculer les limites des fonctions suivantes et préciser lorsque la courbe représentative de f (notée (Cf )) admet une asymptote horizontale. 1. f(x) = x3 − 



Limites et comportement asymptotique Exercices corrigés - AlloSchool

(asymptote verticale et asymptote horizontale). • Exercice 2 : étude de limites asymptotes verticales et horizontales. • Exercice 3 : étude de limites de 



Dérivées II: variations et asymptotes exercices maths standard

corriges/index.html. 3s - Dérivées II : variations et asymptotes. Matières. Dérivées et monotonie ; tableau de variations ; limites et asymptotes. Exercice 1.



Chapitre 2: Limites et Asymptotes

Exercice 2.6: Déterminer ED(f) et calculer les limites à gauche et à droite des valeurs interdites. 1) f (x) = 12 −2x. 3− x. 2) f (x) 



Asymptotes exercices corrigés pdf

Limites asymptotes exercices corrigés. Limites et asymptotes exercices corrigés. Exercices corrigés sur les asymptotes. Exercices asymptotes corrigés terminale 



Limites asymptotes EXOS CORRIGES

M. CUAZ http://mathscyr.free.fr. Page 1/18. LIMITES – EXERCICES CORRIGES. Exercice n°1. Déterminer la limite éventuelle en + ? de chacune des fonctions 



1 Limites et comportement asymptotique Exercices corrigés

Sont abordés dans cette fiche : • Exercice 1 : détermination graphique d'une limite et d'une équation d'asymptote à une courbe. (asymptote verticale et 



Limites de fonctions et asymptotes - Exercices Fiche 2

Déterminer la limite de f en + et en - . 4. Montrer que la courbe C f représentative de la fonction f admet une asymptote en + et en - .



I Exercices

Calculer les limites des fonctions suivantes et préciser lorsque la courbe représentative de f (notée (Cf )) admet une asymptote horizontale. 1. f(x) = x3 ? 



Limites-et-asymptotes-corriges.pdf

= ? : la droite d'équation. 5 y = ? est asymptote horizontale à la courbe représentative de f. Exercice 7 : a). 0 lim ( ) x.



Dérivées II: variations et asymptotes exercices maths standard

Lien vers la page mère : Exercices avec corrigés sur www.deleze.name Dérivées et monotonie ; tableau de variations ; limites et asymptotes. Exercice 1.



Limites et comportement asymptotique Exercices corrigés - AlloSchool

Sont abordés dans cette fiche : • Exercice 1 : détermination graphique d'une limite et d'une équation d'asymptote à une courbe.



Limites et asymptotes et etudes de fonctions

Construire avec un tableau de variation. Pour les exercices de 1 à 4 utiliser le tableau de variations pour trouver le domaine de définition



Chapitre 2: Limites et Asymptotes

voisinage d'un trou ou d'un bord (point limite ou asymptote verticale) de son Exercice 2.3: Esquisser le graphe de la fonction f définie par f (x) = 2? ...



Limites – Corrections des Exercices

Correction : On déduit de la question précédente que la droite d'équation x = 1/3 est une asymptote verticale. —. -9-. Page 10. DAEU-B – Maths.

DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021Limites - Corrections des Exercices

Exercice n

o1

Premiers calculs de limites.

a.Limites en+∞(quandxdevient arbitrairement grand). (a)limx→+∞2020-x (b)limx→+∞12020-x (c)limx→+∞2020-1x (d)limx→+∞3x2+ 2x3 (e)limx→+∞3x2+1x (f)limx→+∞13x2+ 1(g)limx→+∞⎷3x2+ 1 (h)limx→+∞3x 2-5x -2 (i)limx→+∞2⎷3x-5

Correction :

(a)limx→+∞2020-x=-∞, carxdevient arbitrairement grand, avec un coefficient negatif.

(b)limx→+∞12020-x= 0, car on divise1par2020-x, une quantité arbitrairement grande (né-

gative). (c)limx→+∞2020-1x = 2020, car1x devient arbitrairement petit.

(d)limx→+∞3x2+ 2x3= +∞, car on ajoute deux quantités,3x2et2x3, qui deviennent arbitraire-

ment grandes. (e)limx→+∞3x2+1x = +∞, car on ajoute,3x2, une quantité qui deviennent arbitrairement grandes et 1x , qui devient arbitrairement petit. (f)limx→+∞13x2+ 1= 0, car on divise1par3x2+ 1, une quantité arbitrairement grande.

(g)limx→+∞⎷3x2+ 1 = +∞, car on met dans la racine carrée une quantité arbitrairement grande,

donc cette racine devient elle aussi arbitrairement grande. (h)limx→+∞3x 2-5x -2 =-2car les deux quantités3x 2et5x deviennent arbitrairement petites, donc tendent vers0, et seul reste-2.

(i)limx→+∞2⎷3x-5= 0, car la quantité3x-5devient arbitrairement grande, donc⎷3x-5

aussi, et donc son inverse devient arbitrairement petit. b.Limites en-∞(quandxdevient arbitrairement grand dans les négatifs). (a)limx→-∞3x2 (b)limx→-∞2020-x (c)limx→-∞2020-1x (d)limx→-∞3x2-2x3 (e)limx→-∞3x2+1x (f)limx→-∞13x2+ 1(g)limx→-∞⎷3x2+ 1 (h)limx→-∞3x 2-5x -2 (i)limx→-∞2⎷5-3x

Correction :

(a)limx→-∞3x2= +∞, carx2, et donc3x2, est positif et devient arbitrairement grand. -1-

DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021(b)limx→-∞2020-x= +∞, carxdevient arbitrairement grand dans les négatif, et est multipliíe

par un coefficient negatif. (c)limx→-∞2020-1x = 2020, car1x devient arbitrairement petit.

(d)limx→-∞3x2-2x3= +∞, car on ajoute deux quantités,3x2et-2x3, qui deviennent arbitrai-

rement grandes. (e)limx→-∞3x2+1x = +∞, car on ajoute,3x2, une quantité qui deviennent arbitrairement grandes et 1x , qui devient arbitrairement petit.

(f)limx→-∞13x2+ 1= 0, car on divise1par3x2+1, une quantité arbitrairement grande (positive).

(g)limx→-∞⎷3x2+ 1 = +∞, car on met dans la racine carrée3x2+1, une quantité arbitrairement

grande, donc cette racine devient elle aussi arbitrairement grande. (h)limx→-∞3x 2-5x -2 =-2, car les deux quantités3x 2et5x deviennent arbitrairement petites, donc tendent vers0, et seul reste-2.

(i)limx→-∞2⎷5-3x= 0, car la quantité5-3xdevient arbitrairement grande, donc⎷5-3x

aussi, et donc son inverse devient arbitrairement petit. c.Limites en un point (quandxtend vers une valeur finie). (a)limx→202112020-x (b)limx→13x2+1x (c)limx→1⎷3x2+ 1 2 (f)limx→23x2+ 2x3

Correction :

(a)limx→23x2+ 2x3= 28, car3.22+ 2.23= 3.4 + 2.8 = 28. (b)limx→13x2+1x = 4, car3.12+ 1/1 = 4. (c)limx→1⎷3x2+ 1 = 2, car3x2+ 1tend vers3.12+ 1 = 4et⎷4 = 2. (d)limx→22⎷3x-5= 2, car3x-5tend vers3.2-5 = 1et2⎷1 = 2/1 = 1. (e)limx→202112020-x=-1, car2020-Xtend vers2020-2021 =-1. (f)limx→02-1x

2= +∞, car on divise1parx2, une quantité arbitrairement grande positive.

d.Limites à gauche et à droite d"un point. (a)limx→2+12x-4 (f)limx→1-3x2+1⎷1-x

Correction :

-2-

DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021(a)limx→2+12x-4= +∞, car2x-4tend vers0en étantpositif, donc12x-4devient arbitrairement

grand dans les positifs. (b)limx→2-12x-4=-∞, car2x-4tend vers0en étantnégatif, donc12x-4devient arbitraire- ment grand dans les négatifs. (c)limx→2+1(2x-4)4= +∞, car(2x-4)2tend vers0en étantpositif, donc1(2x-4)2devient arbitrairement grand dans les positifs. (d)limx→2-1(2x-4)4= +∞, car(2x-4)2tend vers0en étantpositif, donc1(2x-4)2devient arbitrairement grand dans les positifs. (e)limx→0+3x2+1⎷x = +∞, car3x2tend vers0, tandis que⎷xtend vers0en étantpositif, donc

1⎷x

devient arbitrairement grand dans les positifs.

(f)limx→1-3x2+1⎷1-x= +∞, car3x2tend vers3, tandis que⎷1-xtend vers0en étantpositif,

donc

1⎷1-xdevient arbitrairement grand dans les positifs.

Exercice n

o2 Déterminer les limites suivantes aux valeurs demandées. (1).a.limx→α-2x3, pourα= 2,+∞et-∞. b.limx→α3⎷x, pourα= +∞et4.

Correction :

a.limx→α-2x3, pourα= 2,+∞et-∞.

Limite quandxtend vers2:

limx→2x3= 23= 8, donclimx→2-2x3=-2.8 =-16.

Limite quandxtend vers+∞:

limx→+∞x3= +∞, donc, puisque-2<0, on alimx→2-2x3=-∞.

Limite quandxtend vers-∞:

limx→-∞x3=-∞, donc, puisque-2<0, on alimx→2-2x3= +∞. b.limx→α3⎷x, pourα= +∞et4.

Limite quandxtend vers+∞:

limx→+∞⎷x, donclimx→+∞3⎷x= +∞.

Limite quandxtend vers4:

limx→4⎷x=⎷4 = 2, donclimx→43⎷x= 3.2 = 6. (2).a.limx→αx3+1x , pourα= 2,+∞et-∞. -3-

DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021b.limx→αx3+x2, pourα= 2,+∞et-∞.

c.limx→α2x2-3x+⎷x, pourα= 2et+∞.

Correction :

a.limx→αx3+1x , pourα= 2,+∞et-∞.

Limite quandxtend vers2:

lim x→2x3= 23= 8etlimx→21x =12 , donclimx→2x3+1x = 8×(-12 ) =-4.

Limite quandxtend vers+∞:

lim x→+∞x3= +∞etlimx→+∞1x = 0, donc on alimx→+∞x3+1x

Limite quandxtend vers-∞:

lim = 0, donc on alimx→-∞x3+1x b.limx→αx3+x2, pourα= 2,+∞et-∞.

Limite quandxtend vers2:

lim x→2x3= 23= 8etlimx→2x2= 4, donclimx→2x3+x2= 8 + 4 = 12.

Limite quandxtend vers+∞:

lim x→+∞x3= +∞etlimx→+∞x2= +∞, donc on alimx→+∞x3+x2= +∞.

Limite quandxtend vers-∞:

lim

x→-∞x3=-∞etlimx→-∞x2= 0, donclimx→-∞x3+x2mène à uneForme Indéterminée "∞-∞".

Pour lever cette forme indéterminée, on factorise l"expression et on utilise les règles de limite

d"un produit :x3+x2=x3(1 +1x )et puisquelimx→-∞(1 +1x ) = 1, on obtientlimx→-∞x3+x2= lim x→-∞x3(1 +1x c.limx→α2x2-3x+⎷x, pourα= 2et+∞.

Limite quandxtend vers2:

lim

x→22x2= 2.22= 8,limx→2-3x=-3.2 =-6etlimx→2⎷x=⎷2, donclimx→22x2-3x+⎷x= 8-6+⎷2 =

2 +⎷2.

Limite quandxtend vers+∞:

lim

x→+∞2x2= +∞,limx→+∞-3x=-∞etlimx→+∞⎷x= +∞, donc on a uneForme Indéterminée

En factorisant parx2, on obtient2x2-3x+⎷x=x2? 2-3x +1x ⎷x . Orlimx→+∞x2= +∞et lim x→+∞? 2-3x +1x ⎷x = 2, donc on obtientlimx→+∞2x2-3x+⎷x= +∞ (3).a.limx→αx3?1x -1?, pourα= 2,+∞et-∞. -4-

DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021b.limx→α(3x+ 2)(x2-5), pourα= 0,+∞et-∞.

c.limx→α1x (3-⎷x), pourα= 2et+∞.

Correction :

a.limx→αx3?1x -1? , pourα= 2,+∞et-∞.

Limite quandxtend vers2:

lim x→2x3= 23= 8etlimx→21x -1 =12 -1 =-12 , donclimx→2x3?1x -1? = 8 +12 =172

Limite quandxtend vers+∞:

lim x→+∞x3= +∞etlimx→+∞1x -1 =-1, donc, puisque-1<0, on alimx→+∞x3?1x -1?

Limite quandxtend vers-∞:

lim -1 =-1, donc, puisque-1<0, on alimx→-∞x3?1x -1? b.limx→α(3x+ 2)(x2-5), pourα= 0,+∞et-∞.

Limite quandxtend vers0:

limx→23x+ 2 = 2etlimx→2x2-5 =-5, donclimx→2(3x+ 2)(x2-5) = 2.(-5) =-10.

Limite quandxtend vers+∞:

limx→+∞3x+ 2 = +∞etlimx→+∞x2-5 =-1, donc on alimx→+∞(3x+ 2)(x2-5) = +∞.

Limite quandxtend vers-∞:

limx→-∞3x+ 2 =-∞etlimx→-∞x2-5 = +∞, donc on alimx→-∞(3x+ 2)(x2-5) =-∞.

c.limx→α1x (3-⎷x), pourα= 2et+∞.

Limite quandxtend vers2:

lim x→21x =12 etlimx→23-⎷x= 3-⎷2, donclimx→21x (3-⎷x) =3-⎷2 2

Limite quandxtend vers+∞:

lim x→+∞1x

= 0etlimx→+∞3-⎷x=-∞1, donc on obtient uneForme Indéterminée "0× ∞".

En développant, on obtient

1x (3-⎷x) =3x -1⎷x . Orlimx→+∞3x = 0etlimx→+∞1⎷x = 0, donc on obtientlimx→+∞1x (3-⎷x) =3x -1⎷x = 0, par somme de limites. (4).a.limx→α? 1x -2?2x+ 1, pourα= 2,+∞et-∞. b.limx→α2x+ 1? 1x -2?, pourα= +∞et-∞. c.limx→α1/x2/⎷x , pourα= +∞. -5- DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021d.limx→α1x -2-3⎷x , pourα= +∞. e.limx→α2x2+ 3x+ 43x2+ 5, pourα= 0et+∞.

Correction :

a.limx→α? 1x -2?2x+ 1, pourα= 2,+∞et-∞.

Limite quandxtend vers2:

lim x→21x -2 =12 -2 =-32 etlimx→22x+ 1 = 5, donclimx→2? 1x -2?2x+ 1=-32×5-310

Limite quandxtend vers+∞:

lim x→+∞1x -2 =-2etlimx→+∞2x+ 1 = +∞, donc on alimx→+∞? 1x -2?2x+ 1= 0.

Limite quandxtend vers-∞:

lim x→-∞1x -2 =-2etlimx→-∞2x+ 1 =-∞, donc on alimx→-∞? 1x -2?2x+ 1= 0. b.limx→α2x+ 1? 1x -2?, pourα= +∞et-∞.

Limite quandxtend vers+∞:

lim x→+∞2x+ 1 = +∞etlimx→+∞1x -2 =-2, donc, puisque-2<0, on alimx→+∞? 1x -2?2x+ 1=-∞.

Limite quandxtend vers-∞:

lim x→-∞2x+ 1 =-∞etlimx→-∞1x -2 =-2, donc, puisque-2<0, on alimx→-∞? 1x -2?2x+ 1= +∞. c.limx→α1/x2/⎷x , pourα= +∞. lim x→+∞1/x= 0etlimx→-∞2/⎷x= 0, donc on obtient uneForme Indéterminée "00 ". On change donc l"expression de la fonction, en simplifiant la fraction :

1/x2/⎷x

=⎷x 2x=12 ⎷x

On obtient quelimx→+∞1/x2/⎷x

= limx→+∞12 ⎷x = 0. d.limx→α1x -2-3⎷x , pourα= +∞. lim x→+∞1/x-2 =-2etlimx→-∞-3⎷x = 0. Mais pour déterminer la limite du quotient, nous devons être plus précis, et indiquer le signe du dénominateur : on a toujours ⎷x≥0, donc-3⎷x tend vers 0 : on note celalimx→-∞-3⎷x = 0-. Et par les règles de limite de quotient, on obtient : lim x→+∞1x -2-3⎷x e.limx→α2x2+ 3x+ 43x2+ 5, pourα= 0et+∞.

Limite quandxtend vers0:

-6- DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021lim x→02x2+ 3x+ 4 = 4etlimx→03x2+ 5 = 5, donclimx→02x2+ 3x+ 43x2+ 5=45

Limite quandxtend vers+∞:

limx→+∞2x2+ 3x+ 4 =-2etlimx→+∞3x2+ 5 = +∞, donc on obtient uneForme Indéterminée

". A nouveau, pour lever l"indéterminée, on change donc l"expression de la fonction; ici, l"idée

est defactoriser le numérateur et le dénominateur par la plus grand puissance dex:

2x2+ 3x+ 43x2+ 5=x2(2 + 3/x+ 4/x2)x

2(3 + 5/x2)=2 + 3/x+ 4/x23 + 5/x2.

Maintenant, on alimx→+∞2 + 3/x+ 4/x2= 2etlimx→+∞3 + 5/x2= 3, don on obtient que lim x→+∞2x2+ 3x+ 43x2+ 5=23

Exercice n

o3

Déterminer les limites des fonctions suivantes aux valeurs demandées (en distinguant, si besoin,

les limites à gauche et à droite. a.f(x) =4x4-xen0et en4.

Correction :limx→0f(x) =4.04-0=04

= 0.

On alimx→4x>4(4-x) = 0-, tandis quelimx→4x<4(4-x) = 0+. Donclimx→4x>4f(x) =-∞etlimx→4x<4f(x) = +∞

(limite de quotient de fonctions). b.g(x) = 5x-1 +1x-3en+∞, en3et en-∞. Correction :On alimx→±∞1x-3= 0, donclimx→±∞g(x) =±∞.

D"autre part,limx→3x>31x-3= +∞, etlimx→3x<31x-3=-∞. Donclimx→3x>3g(x) = +∞etlimx→3x<3g(x) =-∞.

c.h(x) =?⎷x-1 +1x en+∞et en0. Correction :Commençons par noter que cette fonction a pour ensemble de définition]0;+∞[. On ne cherchera donc à déterminer que la limite àdroitede0(car pourx <0, la fonction n"est pas définie). On alimx→0x>01x = +∞, Donclimx→0x>0h(x) = +∞.

D"autre part,limx→+∞h(x) = +∞.

d.k(x) = (4-x2)(3x-1)en+∞, en0et en-∞.

Correction :On a d"une partlimx→±∞(4-x2) =-∞etlimx→0(4-x2) = 4. D"autre part,limx→±∞(3x-

1) =±∞etlimx→0(3x-1) =-1. On a donclimx→+∞k(x) =-∞,limx→-∞k(x) = +∞etlimx→0k(x) =-4

(limite de produit de fonctions). e.l(x) =3-⎷3 x (3-⎷x)en9et en0.

Correction :limx→9l(x) =3-⎷3

9 (3-⎷9) = 0.

D"autre part on a3-⎷3>0etlimx→0(3-⎷x) = 3>0, donclimx→0x>0l(x) = +∞etlimx→0x<0l(x) =-∞.

-7- DAEU-B - MathsLimites - Corrections des ExercicesUGA 2020-2021- f.u(x) =4x-3(4-x)2en4.

Correction :On alimx→4(4x-3) = 13>0, etlimx→4(4-x)2= 0+. Donclimx→4u(x) = +∞(limite de

quotient de fonctions). g.v(x) =x2-1/x2en+∞, en0et en-∞.

Correction :Puisquelimx→±∞1x

2= 0, on alimx→±∞v(x) = limx→±∞x2= +∞.

Par ailleurs,limx→0v(x) = limx→0-1x

2=-∞.

h.w(x) =1x(x-7)en+∞, en7et en0.

Correction :On alimx→+∞x(x-7) = +∞(limite d"un produit), donclimx→+∞w(x) = 0.

Puisquex >0lorsquextend vers7, et quelimx→7x>71x-7= +∞etlimx→7x<71x-7=-∞, on alimx→7x>7w(x) =

+∞etlimx→7x<7w(x) =-∞.

En revanche, puisquex-7<0lorsquextend vers0, on alimx→0x>0w(x) =-∞etlimx→0x<0w(x) = +∞.

Exercice n

o4 Déterminer les limites en+∞et en-∞des fonctions suivantes. a.f(x) = 2-x-x3. Correction :On alimx→±∞x= limx→±∞x3=

±∞. Donclimx→+∞f(x) =-∞et

lim x→-∞f(x) = +∞. b.g(x) =x4/2-x2/4.

Correction :On a une F.I. '∞ - ∞". Mais

en factorisant :g(x) =x4(12 -14x2). Puisque lim x→±∞(12 -14x2) =12quotesdbs_dbs47.pdfusesText_47
[PDF] limites et continuité

[PDF] limites et continuité cours bac pdf

[PDF] limites et continuité exercices corrigés

[PDF] limites et continuité exercices corrigés bac

[PDF] limites et continuité exercices corrigés bac maths

[PDF] limites et continuité exercices corrigés bac pdf

[PDF] limites et continuité exercices corrigés bac science

[PDF] limites et continuité exercices corrigés mpsi

[PDF] limites et continuité exercices corrigés pdf

[PDF] Limites et convexité

[PDF] Limites et étude de fonctions

[PDF] Limites et fonctions

[PDF] limites et fonctions composée

[PDF] Limites et formes indeterminées

[PDF] Limites et propriétés