[PDF] Distributions de plusieurs variables





Previous PDF Next PDF



Th´eorie des distributions

20 nov. 2015 [1] J.M. Bony Cours d'analyse



Distributions analyse de Fourier

http://www.cmls.polytechnique.fr/perso/golse/MAT431-10/POLY431.pdf



COURS METHODES MATHEMATIQUES POUR LINGENIEUR 2

Chapitre 2. La théorie des distributions. 2.1 Introduction. Une distribution est une sorte de “fonction généralisée” et elle est introduite pour mo- déliser 



Distributions Alain Yger

Ce cours `a l'interface des mathématiques fondamentales et appli- La multiplication des distributions par des fonctions C?.



Distributions

Dans l'espace des distributions il y a effectivement une telle distribution unité pour On a vu



Cours 3 Distributions conditionnelles

Cours 3. Distributions conditionnelles. Partition de l'échantillon conditionnée par une variable. 1 L'observation d'une population par une variable X 



Mathématiques pour lingénieur

RESTRICTION POUR CE COURS : fonctions `a une seule variable. Définition La somme de deux distributions et le produit d'une distribution.



Distributions de plusieurs variables

8 mai 2008 Comment trouver les distributions marginales de X et de Y `a partir de la distribution conjointe de (X Y )? Cas discret. P(X = x) = ? y. P(X = ...



PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

Elles simplifient considérablement les calculs. Ce cours présente trois distributions discrètes : la distribution binomiale la distribution géométrique et la 



Distributions

Les équations différentielles seront discutées ultérieurement dans un autre cours. 4.1 Définitions. On introduit dans ce paragraphe la notion de distribution.

Distributions de plusieurs

variables

Mathematiques Generales B

Universite de Geneve

Sylvain Sardy

8 mai 2008

1

1. Distributions conjointes

Comment generaliser les fonctions de probabilite et de densite a plus d'une variable aleatoire?

Variables aleatoires discretes:

Considerons 2 variables discretes :X=utilite des mathematiques etY= branche d'etude.XnYPharma SdlT Bio ChimieTotal

Math15 2 16 831

Math219 4 24 1259

Math32 2 6 414

Total26 8 46 24104

Tableau de contingence (2007)Distributions

2

XnYPharma SdlT Bio ChimieTotal

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

Total0.25 0.08 0.44 0.231

Tableau de probabilite

La probabilite conjointe est simplement donnee par un tableau de probabilites, ou

P(X = i;Y = j) = pijpour tout(i;j)

pour deux variables. Pour trois variables, il faut denir : P(X = i;Y = j;Z = k) = pijkpour tout(i;j;k):Distributions 3 Variables aleatoires continues: deux variables aleatoiresX=taille etY= poids ont unefonction de densite conjointesi

P((X;Y)2A) =Z Z

A f(x;y) dx dy; ouf(x;y)>0etR Rf(x;y)dx dy= 1.

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

Est-ce bien une fonction de densite?

Exemple : Distribution uniforme bivariee sur un carre, un disque, ...Distributions 4y x f(x,y)Fonction de densite a deux variables.

Distributions

5 Il est aussi possible de denir unefonction de repartition conjointe

F(x;y) = P(X6x;Y6y)

pour deux variables. Il est facile de generaliser an>2variables. La fonction de densite conjointe s'obtient de la fonction de repartition en dierenciant@2F@x@y =f pourn= 2.Distributions 6 Exemple : On tire deux boules sans remise d'une urne qui contient 8 Rouge,

6 Bleue et 4 Verte. SoitX=le nombre de boules Rouge etY=le nombre de

boules Bleue. Trouver la distribution conjointe deXetY.

XnY0 1 2

06 153
24153
15153
132
153
48153
0228
153
0

0 Distributions

7 Exemple : Soit deux variables aleatoiresXetYde densitef(x;y) =c(x+y) sur[0;1][0;1]. (1) Que vautc? (2) Que vautP(X<1=2)? (etP(X61=2)?) (3) Que vautP(X + Y<1)? (1) (2)P(X<1=2) = P(X<1=2;Y2[0;1]) =R1=2 0R 1

0(x + y) dy dx =

(3)P(X + Y<1) = P(X<1Y;Y2[0;1]) =R1 0R 1y

0(x + y) dx dy =Distributions

8

2. Distributions marginales

Comment trouver lesdistributions marginalesdeXet deYa partir de la distribution conjointe de(X;Y)?

Cas discret

P(X = x) =

X yP(X = x;Y = y) est la distribution marginale deX.

P(Y = y) =

X xP(X = x;Y = y) est la distribution marginale deY.Distributions 9

Exemple :XnYPharma SdlT Bio ChimieP(X = x)

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

P(Y = y)0.25 0.08 0.44 0.231

Tableau de probabiliteDistributions

10

Exemple :

XnY0 1 2P(X = x)

06 153
24153

1515345

153
132
153
48153
080
153
228
153
0 0 :::

P(Y = y):::

72153

Distributions

11

Cas continu

f

X(x) =Z

f(x;y)dy est la distribution marginale deX. f

Y(y) =Z

f(x;y)dx est la distribution marginale deY. Cela denit-il bien des fonctions de densite?Distributions 12

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

On trouve :

f

X(x)= Z

f(x;y)dy=Z 1 x exp(y)dy= exp(x) f

Y(y)= Distributions

130246810

0.0 0.2 0.4 0.6 0.8 1.0 x f(x)

Densité marginale X

0246810

0.0 0.1 0.2 0.3 y f(y) Densité marginale YFonctions de densite marginale.

Distributions

14

3. Independance

Denition

Deux v.a.XetYsontindependantessi pour tout ensembleAetBon a

P(X2A;Y2B) = P(X2A)P(Y2B):

On peut demontrer que cette denition est equivalente a :

Cas disc ret:

P(X = x;Y = y) = P(X = x)P(Y = y)

Cas c ontinu:

f (X;Y)(x;y) =fX(x)fY(y) pour toutx;y.Distributions 15

Exemple :

XnY0 1 2P(X = x)

06 153
24153

1515345

153
132
153
48153
080
153
228
153
0 0 28

153P(Y = y):::

72153

Puisque

P(X = 2;Y = 2)6= P(X = 2)P(Y = 2);

on deduit queXetYne sont pas independantes.Distributions 16

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

On a trouve :

f

X(x)= Z

f(x;y)dy=Z 1 x exp(y)dy= exp(x) f

Y(y)= yexp(y)

DoncXetYne peuvent pas ^etre independantes.

Exemple :(X;Y)a pour densite conjointef(x;y) = (x+y)2(xy)2sur [0;1]2. Les v.a.XetYsont-elles independantes?Distributions 17

4. Somme de deux v.a. independantes

Soit 2 v.a.XetY. On s'interesse a la distribution de leur sommeS=X+Y. D'une maniere generale, c'est un probleme dicile. En supposant queXetY sont independantes, le probleme est parfois simplie.

Cas discret

P(S = s)

P(X + Y = s)

=X xP(X = x;Y = sx) X xP(X = x)P(Y = sx):Distributions 18 Exemple :XPoi()etYPoi()sont independantes. Peut-on dire quelque chose deS=X+Y? PuisqueP(X = j) = 0quandj <0, etP(Y = kj) = 0quandj > k

P(X + Y = k)

kX j=0P(X = j)P(Y = kj) kX j=0exp()jj!exp()kj(kj)! exp( (+))1k!k X j=0C k;jjkj exp( (+))1k!:::Distributions 19

Donc on peut ecrire "Poi()ind+ Poi() = Poi(+)".

C'est plus l'exception que la regle de trouver une distribution simple et de m^eme loi. Par exemple a-t-on "Bin(n;p1)ind+ Bin(n;p2) = Bin(n;p1+p2)"? Ou plut^ot "Bin(n1;p)ind+ Bin(n2;p) = Bin(n1+n2;p)"?Distributions 20

Cas continu

SiXfXest independante deYfY, alorsS=X+Ya pour densite f

X+Y(s) =Z

f

X(x)fY(sx)dx:

On peut par exemple demontrer que

"N(1;21)ind+ N(2;22) = N(1+2;21+22)":Distributions 21

5. Distributions conditionnelles

Cas discret

P(X = xjY = y) =P(X = x;Y = y)P(Y = y)

Cas continu

f(xjY=y) =f(x;y)f Y(y) Ainsif(x;y) =f(xjY=y)fY(y). Donc siXetYsont independants, on obtient (page 14) : f(x;y) =fX(x)fY(y):Distributions 22

Exemple :XnYPharma SdlT Bio ChimieP(X = x)

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

P(Y = y)0.25 0.08 0.44 0.231

Tableau de probabilite

P(X = 2jY = Bio) =P(X=2;Y=Bio)P(Y=Bio)

=0:230:44= 0:52Distributions 23

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon f(xjY=y) =f(x;y)f(y)=exp(y)yexp(y)=1y pour0< x < y

DoncXjY=y:::.

f(yjX=x) =f(x;y)f(x)=exp(y)exp(x)= exp((yx))poury > x.

DoncYXjX=xExp(1).Distributions

24012345

0.0 0.5 1.0 1.5 2.0 x f(x|Y=0.5)

Conditional X|Y=0.5

012345

0.0 0.5 1.0 1.5 2.0 y f(y|X=1)

Conditional Y|X=1

012345

0.0 0.5 1.0 1.5 2.0 x f(x|Y=2)

Conditional X|Y=2

012345

0.0 0.5 1.0 1.5 2.0 y f(y|X=3) Conditional Y|X=3Fonctions de densite conditionnelle.

Distributions

quotesdbs_dbs50.pdfusesText_50
[PDF] cours sur les énergies renouvelables

[PDF] cours sur les fibres textiles

[PDF] cours sur les genres littéraires pdf

[PDF] cours sur les mille et une nuits

[PDF] cours sur les nombres premiers 3eme

[PDF] cours sur les puissances 4ème

[PDF] cours sur les puissances de 10

[PDF] cours sur les serveurs informatique pdf

[PDF] cours sur les torseurs

[PDF] cours sur les transformations du plan pdf

[PDF] cours sur les travaux de fin d'exercice pdf

[PDF] cours sur powerpoint

[PDF] cours sûreté de fonctionnement des systèmes industriels

[PDF] cours sureté de fonctionnement logiciel

[PDF] cours sureté de fonctionnement ppt