[PDF] mecanique du solide rigide enseignement de licence de mecanique





Previous PDF Next PDF



Cours de Mécanique des Systèmes de Solides Indéformables Cours de Mécanique des Systèmes de Solides Indéformables

Ce manuel est un cours de base de la mécanique des systèmes de solides indéformables particulièrement destiné aux étudiants de la deuxième année de l'École 



Mécanique du solide

u r r. Ω=Ω le vecteur rotation du cylindre. Page 51. Mécanique du solide transparents de cours



COURS DE MÉCANIQUE DES SYSTÈMES DE SOLIDES

Calcul vectoriel-Torseurs. Cinématique du solide



UE 41c : Mécanique du Solide

III CINEMATIQUE DU SOLIDE. 1. Définition du solide. Dans ce cours nous nous intéresserons uniquement au solide indéformable. Un solide sera donc un corps 



Mécanique du solide UE MEC24a

27 nov. 2014 – Les deux grandes idées du cours : le principe fondamental de la dynamique et la conservation de l'énergie. En mécanique du point on ne voit ...



Polycopié dexercices et examens résolus: Mécaniques des

Ces exercices couvrent les sept chapitres du polycopié de cours de la mécanique des systèmes indéformables : Calcul vectoriel-Torseurs. Cinématique du solide



Mécanique du solide et des matériaux ´Elasticité-Plasticité-Rupture

mécanique dUMEC restituée au cours de cette déchirure est plus faible que l'énergie dUS nécessaire `a la séparation la déchirure ne se produit pas



Mécanique des solides

La suite des points P de E qui coïncident avec M au cours du temps (courbe décrite par le point) est appelée trajectoire de M dans le référentiel. Le vecteur 



Mécanique du solide et des systèmes

Que ces exercices soient des vérifications et applications directes du cours ou qu'ils permettent de vérifier sa maîtrise et de s'entraîner leur correction est 



Cours de Mécanique des Systèmes de Solides Indéformables

Conformément au descriptif de la mécanique des systèmes de solides indéformables le cours est articulé en sept chapitres : Calcul vectoriel-Torseurs



Mécanique du solide

u r r. ?=? le vecteur rotation du cylindre. Page 51. Mécanique du solide transparents de cours



Polycopié dexercices et examens résolus: Mécaniques des

Ces exercices couvrent les sept chapitres du polycopié de cours de la mécanique des systèmes indéformables : Calcul vectoriel-Torseurs. Cinématique du solide



Mécanique du solide et des matériaux ´Elasticité-Plasticité-Rupture

nouvelle approche plus déductive de la mécanique des solides au cours duquel les fissures se forment et croisent lentement sous chargement plus faible ...



mecanique du solide rigide enseignement de licence de mecanique

MECANIQUE DU SOLIDE RIGIDE On considère le vecteur u ayant pour extrémités deux points d'un solide (S) en ... cinématique (voir cours sur les torseurs).



COURS DE MÉCANIQUE DES SYSTÈMES DE SOLIDES

solides indéformables le cours est articulé en sept chapitres : Un torseur est un outil mathématique utilisé principalement en mécanique du solide ...



COURS DE MECANIQUE 2ème année

COURS DE MECANIQUE. 2ème année. Catherine POTEL Philippe GATIGNOL. Chapitre 4. DYNAMIQUE DU SOLIDE. Université du Maine - UFR Sciences et Techniques.



mini - Mécanique des solides

Mécanique des solides. Cours + Exercices. 2eédition. Yves Berthaud. Professeur à l'UPMC. Cécile Baron. Chargée de recherche CNRS Aix-Marseille Université.

1

MECANIQUE DU SOLIDE RIGIDE

ENSEIGNEMENT DE LICENCE DE MECANIQUE

UNIVERSITE PIERRE ET MARIE CURIE

LA 201 SECTION B

ANNEE 2006-2007

UPMC

A. ALLICHE

2 CHAPITRE I - CALCUL VECTORIEL - RAPPELS DE MATHEMATHIQUES

1 Espace vectoriel et représentation d'un vecteur.

Soit E un espace vectoriel de dimension n = 3, en fait 3 , de base 123
(,,)beee formée de 3 vecteurs linéairement indépendants. Tout vecteur de E peut être représenté par une combinaison linéaire des vecteurs de base de b :

112233

vveveve e ou bien sous la forme 3 1 ii i vv Une autre notation peut être adoptée, appelée aussi convention de l'indice muet ou convention d'Einstein : ii vve

L'indice répété i est l'indice muet sur lequel se fait l'opération. Cette convention n'est

applicable que dans le même monôme.

L'espace vectoriel E est souvent représenté par un repère R possédant une origine O et une

base. On notera : 123
(,,)beee 122
(;,,)ROeee

2 Opérations sur les vecteurs

2 - 1 Produit scalaire

Un produit scalaire est une forme bilinéaire symétrique de ExE sur telle que la forme quadratique associée soit définie positive. Par définition une forme bilinéaire f est une application qui à deux vecteurs de E associe le réel et uv (,)fuv . Par ailleurs f est une application linéaire par rapport à chacun des arguments.

Notation :

(,).fuvuv La symétrie du produit scalaire est définie par la propriété : UPMC

A. ALLICHE

3 (,)..(,)fuvuvvufvu Une forme est dite définie positive si le produit scalaire d'un vecteur par lui-même est positif et ne s'annule que si le vecteur .uu 0u

Remarques :

On définie le produit scalaire de 2 vecteurs et uv dans une base par : 123
(,,)beee 33
11 iijjijijiijj ij uvueveuveeueve Deux vecteurs sont dits orthogonaux si leur produit scalaire est nul : .0uv

Cette dernière propriété nous permet d'écrire que dans le cas d'une base orthonormée nous

avons : 1 si 0 si ijij ij ee ij D'où une autre écriture possible pour le produit scalaire :

112233

iijjii uvueveuvuvuvuv Norme d'un vecteur : Parmi les définitions possibles de la norme on retiendra celle de la norme euclidienne : 1/22 iii i uuuuuu On se sert de cette dernière définition pour introduire une nouvelle notation du produit scalaire impliquant l'angle entre les deux vecteurs : ..cos(,uvuvuv)

2 - 2 Produit mixte

Soit E un espace vectoriel de base

123
(,,)beee . On appelle produit mixte des vecteurs de E, leur déterminant dans la base, et uvw 123
(,,)beee . On le note : UPMC

A. ALLICHE

4 (,,)(,,)uvwDetuvw On démontre que le déterminant est invariant par changement de la base b.

Propriétés :

Le produit mixte est invariant par rotation circulaire des vecteurs. Cette propriété est directement liée à celle des déterminants : (,,)(,,)(,,)uvwwuvvwu Le produit mixte de 3 vecteurs coplanaires est nul : (,,)0,, liésuvwuvw Les autres cas de nullité du produit mixte se vérifient dans le cas où deux des trois vecteurs sont colinéaires, et lorsque un des vecteurs est nul.

2 - 3 Produit vectoriel :

Théorème :

Soient deux vecteurs de E. et uv

l'application ER wuvw est une forme linéaire.

Il existe un unique vecteur

de E tel que : ,()(,,).wEwuvww

Démonstration :

est linéaire puisque le déterminant est linéaire par rapport au dernier argument. unicité de la deuxième proposition :

Supposons qu'il existe deux vecteurs et '

tel que : ,()(,,).'.wEwuvwww alors et donc le vecteur (').0wEw est orthogonal à tout vecteur de E. C'est un vecteur nul '

Existence :

Notons P la matrice constituée des vectrices colonnes de , et uvw UPMC

A. ALLICHE

5 111
222
333
uvw Puvw uvw

Nous aurons

123322133131221

(,,)det()()()uvwPwuvuvwuvuvwuvuv

Si l'on pose pour

233211331212213

()()(uvuveuvuveuvuve)

Nous obtenons alors :

(,,).uvww

Le vecteur

ainsi défini est le produit vectoriel des deux vecteurs ,uv et on note : uv

Retour au produit mixte :

Nous pouvons donc aisément écrire le produit mixte de la manière suivante : (,,).uvwuvw

Les propriétés du déterminant et la symétrie du produit scalaire permettent d'écrire :

(,,).(,,)(,,).uvwuvwvuwvwuuvw

Expression du produit vectoriel :

Le produit vectoriel uv

peut s'écrire de divers manières, en particulier en se servant de l'expression du déterminant précédente, on aura :

223311

12

331122

uvuvuv uveee uvuvuv 3 es

Propriétés du produit vectoriel :

a) L'application de EE dans E est anticommutative, bilinéaire et non associative. b) et uvuuvv c) 0, colinéairuvuv

Formule du double produit vectoriel

UPMC

A. ALLICHE

6 ()(.)(.)uvwuwvuvw (démonstration en TD)

2 - 4 Division vectoriel :

Soient deux vecteurs et vw

connus, existe-t-il un vecteur x tel que : vxw

Remarque :

doit être non nul v doivent être orthogonaux et vw vSi existe, alors x x est aussi solution. Recherchons maintenant le vecteur en fonction de x et vw En multipliant vectoriellement par , on obtient : v ()vvxvw En utilisant la formule du double produit vectoriel, on aboutit à l'expression suivante : 2 1 (.)(.)vxvvvxvwxvvw v On peut démontrer, à ce niveau la deuxième remarque ci-dessus : 2 1( vvw vxvvvw vv 2 en développant ce double produit vectoriel, on obtient : 2 (.)vww vxw v

Cette solution n'est valable que si .0vw

3 - Identité de Lagrange

Théorème :

Soient deux vecteurs de E. et uv

L'identité de Lagrange est définie par la relation suivante : 22
2 (.).uvuvuv 2

Démonstration :

2 ().()(,,)(,,)(().)uvuvuvuvuvvuvuvuvu UPMC

A. ALLICHE

7 En utilisant la formule du double produit vectoriel on obtient : ()(.).(.).vuvvvuvuv

D'où :

222
2 .(.uvuvuv L'identité de Lagrange nous permet d'écrire une autre formulation du produit vectoriel : ().sin(,uvuvuv

Démonstration :

2222222

quotesdbs_dbs47.pdfusesText_47
[PDF] mécanique du solide cours mp

[PDF] mécanique du solide exercices corrigés

[PDF] mecanique du solide exercices corrigés pdf

[PDF] mécanique du solide indéformable

[PDF] mecanique du solide resume

[PDF] mecanique du solide torseurs exercices corrigés pdf

[PDF] mécanique dynamique cours

[PDF] mécanique dynamique exercices corrigés

[PDF] mécanique générale cours et exercices corrigés download

[PDF] mecanique generale exercice corrigé

[PDF] mécanique l1 exercices corrigés

[PDF] mécanique quantique cours

[PDF] mecanique quantique exercices corrigés gratuit

[PDF] mecanique quantique exercices corrigés pdf l2

[PDF] mecanique quantique exercices corrigés pdf l3