[PDF] Exercices et Contrôles Corrigés de Mécanique du Point Matériel





Previous PDF Next PDF



Ecole Préparatoire en Sciences et Techniques dOran Rappels de

Je souhaite que ce recueil d'exercices corrigés et exercices supplémentaires en Chapitre 5 : Oscillations forcées des systèmes à un seul degré de liberté.



Vibrations et Ondes (F312) : Cours et Exercices Corrigés Partie I

oscillations des systèmes mécaniques et électriques et qui a ... est infinie. Page 71. Chapitre V. Oscillations forcées à deux degrés de liberté. 68. Exercice N°2.



Premier exercice : (7 points) Oscillateur mécanique

Le but de cet exercice est d'étudier les oscillations libres d'un oscillateur mécanique. On dispose d'un mobile (A) de masse m = 025 kg



Chapitre I Généralités sur les Vibrations et les équations de Lagrange

Je souhaite que ce recueil d'exercices corrigés et exercices supplémentaires en vibrations m1 effectue des oscillations forcées sous l'effet d'une force.



Exercices de Mécanique (2ePériode) Oscillateur harmonique amorti

Ex-M5.3 Oscillations forcées d'un véhicule sur une route ondulée. Une automobile est sommairement modélisée par une masse m placée en M et reposant sur une.



CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1

Système effectuant des oscillations forcées : circuit RLC … 4°) La cause d'amortissement est une force de frottement ou une résistance. Pour entretenir une 



Polycopie Ondes et Vibrations

Ce document est un cours détaillé avec des exercices corrigés. Il Oscillateurs mécaniques par élasticité et soumis à une force extérieure et un amortisseur.



SERIE DEXERCICES N° 16 : MECANIQUE : OSCILLATEURS

Oscillations forcées. Exercice 7 : principe du sismographe. Un sismographe est un appareil destiné à mesurer l'amplitude d'une secousse sismique 



Polycopié dexercices et examens résolus: Mécanique du point

Caractériser le vecteur vitesse de la balle lors de son impact sur le sol. Corrigé : 1. La méthode est rigoureusement la même que pour l'exercice de 



218 exercices corrigés Mécanique (98 exercices corrigés

oscillations électriques forcées. I. Grandeur alternatives. 1. Courant alternatif. Un courant alternatif sinusoïdal est un courant dont l'intensité est une ...



Vibrations et Ondes (F312) : Cours et Exercices Corrigés Partie I

- Chapitre III : Oscillations forcées des systèmes à un degré de liberté. - Chapitre IV : Oscillations libres des systèmes à deux degrés de liberté. - Chapitre 



Oscillateurs mécaniques

Exercice 1 : Détermination d'un coefficient de viscosité est soumise à une force de frottement fluide dont l'expression est.



Oscillateurs linéaires Cours et exercices

Figure 1.1: Exemples d'oscillateurs mécaniques : syst`eme masse-ressort Celui-ci contient des rappels de cours et de nombreux exercices corrigés de.



SERIE DEXERCICES N° 16 : MECANIQUE : OSCILLATEURS

Oscillations forcées. Exercice 7 : principe du sismographe. Un sismographe est un appareil destiné à mesurer l'amplitude d'une secousse sismique 



Oscillateurs couplés

3 – Cas de deux oscillateurs faiblement couplés battements : 4 – Exemples de deux pendules simples couplés. II – Oscillations mécaniques couplées forcées :.



Exercices de dynamique et vibration mécanique

14 nov. 2021 3 Exercices d'application de vibration mécanique ... Oscillations des gratte-ciel* . ... 5 ´Eléments de corrigé.



Exercices de Mécanique (2ePériode) Oscillateur harmonique amorti

Ex-M5.3 Oscillations forcées d'un véhicule sur une route ondulée. Une automobile est sommairement modélisée par une masse m placée en M et reposant sur une.



Exercices et Contrôles Corrigés de Mécanique du Point Matériel

On se propose de traiter dans cet exercice le déplacement élémentaire L'effet de l'accélération de Coriolis est qu'elle engendre une force d'inertie qui.



ATS TD 4 : Oscillateurs mécaniques en régime sinusoïdal forcé

Jules Ferry. TD 4 : Oscillateurs mécaniques en régime sinusoïdal forcé. M5. Exercice 1 : Détermination expérimentale des caractéristiques d'un oscillateur.



Ecole Préparatoire en Sciences et Techniques dOran Rappels de

Oscillations forcées des systèmes à un seul degré de liberté Je souhaite que ce recueil d'exercices corrigés et exercices supplémentaires en.



PDF Télécharger oscillations mecaniques forcées exercices corrigés

2 Chapter 1 Introduction Notion d’oscillateur Un syst eme physique poss ede des positions d’ equilibres stables lorsqu’il existe des forces au sein m^eme du syst eme qui tendent a le ramener vers les positions d’ equilibre



SERIE D’EXERCICES N° 16 : MECANIQUE : OSCILLATEURS

Exercice 8 : oscillations forcées d’une particule sur un cerceau mobile Une particule assimilée à un point matériel M de masse m se déplace sur la rainure intérieure d’un cerceau de centre O de rayon R et d’axe horizontal Oz avec une force de frottement visqueux r r f =?b mv où r



49 Chapitre 5 Les oscillations forcées - cpgeeu

50 Chapitre 5 Les oscillations forcées 5 2 Résolution La solution de l’équation (1) est la somme de la solution de l’équation sans second membre et de la solution particulière Compte tenu de la présence d’un amortissement la solution de l’équation sans second membre tend vers 0 au bout d’un temps su¢samment important



CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1°) « Evoluer de façon alternative et périodique » signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène pendant une durée constante appelée période

Quelle est l'amplitude des oscillations forcées ?

oscillations mécaniques entretenues sont dites forcées. En régime sinusoïdal forcé l'amplitude Xm des oscillations d'un pendule. Exercice 4 : Portrait de phase des oscillations forcées On désigne par V (?) l'amplitude des oscillations de la vitesse en régime sinusoïdal permanent.

Qu'est-ce que le mouvement général de vibration des oscillateurs ?

0) que l’on appelle les frequences propres du systeme. On dit aussi que le mouvement general de vibration des oscillateurs est une superposition de modes normaux (ou propres). Les variables (y 1;y 2) qui decouplent le systeme sont appelees les coordonnees normales. 10 2.2.3 Interpretation physique des modes

Comment calculer la fréquence d'un oscillateur ?

Un oscillateur, de fréquence propre f o = 1 / T o, subit des oscillations forcées s'il oscille à une fréquence f imposée par un appareil extérieur appelée excitateur. Quand Est-ce qu'un oscillateur est harmonique ?

Quel dispositif impose la fréquence des oscillations ?

Quel dispositif impose la fréquence des oscillations ? Un oscillateur, de fréquence propre f o = 1 / T o, subit des oscillations forcées s'il oscille à une fréquence f imposée par un appareil extérieur appelée excitateur.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

CHAPITRE1

Rappels et compléments mathématiques

1.1 Exercices

1.1.1

Opérations sur les vecteurs

On donne trois vecteurs?A(3,2⎷2,⎷3),?B(2,⎷3,⎷2) et?C(1,2,2).

1. Calculer les normes??A?,??B?et??C?. En d´eduire les vecteurs unitaires?uA,?uB

et?uCdes directions, respectivement, de?A,?Bet?C.

2. Calculer cos(

??uA,?uB), cos(??uB,?uC) et cos(??uC,?uA), sachant que les angles sont com- pris entre 0 etπ.

3. Calculer les composantes des vecteurs?e1=?uB??uC,?e2=?uC??uAet?e3=?uA??uB.

4. En d´eduire sin(

??uA,?uB), sin(??uB,?uC) et sin(??uA,?uC). V´erifier ces r´esultats en utili- sant la question 2.

5. Montrer que?e1,?e2,?e3peuvent constituer une base. Cette base est-elle orthogo-

nale, norm´ee?

1.1.2Différentielle et dérivée d"un vecteur unitaire

SoitR(O,?i,?j,?k) un rep`ere cart´esien et consid´erons la base sph´erique (?er,?eθ,?e?).

1. Exprimer les vecteurs de la base sph´erique dans la base cart´esienne.

2. Calculer

∂?e r 3

Rappels et compl´ements math´ematiques

3. En d´eduired?er,d?eθetd?e?dans la base sph´erique.

4. Montrer que les diff´erentielles des vecteurs de la base sph´erique peuvent se mettre

sous la forme d?e en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base sph´erique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base sph´erique par rapport `aR.

5. On consid`ere la base cylindrique (?eρ,?e?,?k) . Quel est son vecteur rotation par

rapport `aR? En utilisant les r´esultats pr´ec´edents, calculer la d´eriv´ee par rapport

au temps des vecteurs de la base cylindrique par rapport `aR.

6. Consid´erons un vecteur

?V=Vr?er+Vθ?eθ+V??e?. En utilisant les r´esultats pr´ec´e- dents, calculer la d´eriv´ee par rapport au temps de ?Vpar rapport `aR

1.1.3Déplacement élémentaire

On se propose de traiter dans cet exercice le d´eplacement ´el´ementaire dans les trois

syst`emes de coordonn´ees, cart´esiennes, cylindriques et sph´eriques et ce en utilisant les

r´esultatsde l"exercice 2

Consid´erons un rep`ere cart´esienR(O,?i,?j,?k). Soient (?eρ,?e?,?k) et (?er,?eθ,?e?) respective-

ment les bases cylindrique et sph´erique. SoitMun point rep´er´e par--→OMpar rapport `a

R. On consid`ere un d´eplacement infinit´esimal deMenM?tel queM?est tr`es proche de

M. On note alors le d´eplacement ´el´ementaire par--→OM?---→OM=d---→MM?=d--→OM

1. Dans le rep`ere cart´esien,--→OM=x?i+y?j+z?k. Calculer le d´eplacementd--→OMpar

rapport `aRdans la base cart´esienne.

2. Rappeler le vecteur rotation de la base cylindrique par rapport `aR. Partant de--→OM=ρ?eρ+z?k, calculer le d´eplacementd--→OMpar rapport `aRdans la base

cylindrique.

3. Rappeler le vecteur rotation de la base sph´erique par rapport `aR. Dans la base

sph´erique--→OM=r?er, calculer le d´eplacementd--→OMpar rapport `aRet ce dans cette base.

1.1.4Tube cathodique

On ´etudie le mouvement des ´electrons dans le tube cathodique d"un osilloscope. Les ´electrons arrivent enOavec une vitesse?v0=v0?iet traversent les plaques de d´eviation P

1etP2de longueurl. Les ´electrons sont soumis entre les plaques de d´eviation`a une

acc´el´eration uniforme?γ0=γ0?jet sont d´evi´es, figure ci-dessous. L"´ecran est `a la distance

D= 5lde la sortie des plaques. On exprime dans le reste de l"exercice les grandeurs vectorielles dans la base cart´esienne. la vitesse de la particule `a la sortie des plaques est?vAet fait un angleαavec?i. L"acc´el´eration des ´electrons entre les pointsAetEest nulle. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices5

1. Etablir les ´equations horaires du mouvement

des ´electrons entre les plaques de d´eviation, x(t) ety(t). En d´eduire l"´equation de la tra- jectoirey=f(x).

2. Calculer la vitesse des ´electrons au pointA,

?v

A, en fonction dev0,letγ0. En d´eduire

l"angleα=?(?i,?vA).

3. Quelle est la nature de la trajectoire des ´elec-

trons entreAetE? En d´eduire les ´equations horairesx(t) ety(t). D´eterminer la d´eviation

δen fonction dev0,letγ0.

y xO j i 1P 2 P l D=5lδ E Aα

1.1.5Exercice

Un v´ehicule, que l"on peut consid´erer comme un point mat´erielM, se d´eplace par

rapport `a un r´ef´erentielR(O,xyz) avec un mouvement de translation uniforme de vitesse?V(M/R) telle que|?V(M/R)|=v. Le v´ehicule roule sur une bosse dont le profil peut

ˆetre repr´esent´e pary=f(x). On s"int´eresse au segment de la route [A,B].

1. Calculer la vitesse?V(M/R) en fonction

de xet de la d´eriv´ee premi`eref?(x) = df(x)/dxpar rapport `ax.

2. Calculer l"acc´el´eration?γ(M/R). En d´e-

duire que la composante de l"acc´el´eration selonOypeut se mettre sous la forme y(M/R) =v2f??(x) (f?2+ 1)2 f ??(x) ´etant la d´eriv´ee seconde def(x) par rapport `ax. AB M y x O y=f(x)

1.1.6Opérations sur les vecteurs : une autre approche

L"objectif de cet exercice est de reformuler les expressions des op´erations vectorielles en utilisant la

fonction de Kroneckerδij1et le tenseur de Levi-Civita?ijk2.Les indicesi,j,k? {1,2,3}´etant donn´e

que l"on travaille dans un espace vectoriel de dimension 3.

1. la fonction de Kronecker est d´efinie par

ij=?1 sii=j

0 si non

2. Le tenseur de Levi-Civita est d´efini par

ijk=???0 si au moins deux indices sont ´egaux1 si (i,j,k)?{(1,2,3),(2,3,1),(3,1,2)} -1 si (i,j,k)?{(1,3,2),(2,1,3),(3,2,1)}. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

On consid`ere un rep`ereRmuni de la base orthonorm´ee (?e1,?e2,?e3). La propri´et´e d"or- thonormalit´e de la base se traduit par?ei·?ej=δij, qui seront utilis´es dans la suite

de l"exercice, sauf mention contraire. Soient trois vecteurs?A(a1,a2,a3),?B(b1,b2,b3) et?C(c1,c2,c3).

1. Montrer que le produit scalaire

?A·?B=? i=1,3aibi.

2. Sachant que lai`emecomposante de?A??Bpeut s"´ecrire comme suit (?A??B)i=?3j,k=1?ijkajbk, en d´eduire que

A??B=?

i,j,k? ijkajbk?ei.

3. Montrer que le produit mixte

A·(?B??C) =?

i,j,k? ijkaibjck.

4. En utilisant le r´esultat de la question 2, montrer

A?(?B??C) = (?A·C)?B-(?A·B)?C

5. Montrer que

??A??B?

·??C??D?

=??A·?C???B·?D? -??A·?D???B·?C?

1.1.7Exercice : Opérations sur les vecteurs

On donne les trois vecteurs?V1(1,1,0),?V2(0,1,0) et?V3(0,0,2).

1. Calculer les normes??V1?,??V2?et??V3?. En d´eduire les vecteurs unitaires?v1,?v2

et?v3des directions respectivement de?V1,?V2et de?V3.

2. Calculer cos(

??v1,?v2), sachant que l"angle correspondant est compris entre 0 etπ.

3. Calculer?v1·?v2,?v2??v3et?v1·(?v2??v3). Que repr´esente chacune de ces trois

grandeurs?

1.1.8Exercice : Différentielle et dérivée d"un vecteur unitaire

Consid´erons la position d"un pointMdans le rep`ereR(O,xyz). Soient (?i,?j,?k),

(?eρ,?e?,?k) et (?er, ?eθ, ?eφ) respectivement les bases cart´esienne, cylindrique et sph´erique

associ´ees `a ce rep`ere. Le tenseur poss`ede les propri´et´es suivantes, que l"on neva pas d´emontrer i,j? ijk?ijl=δklet? i? ijk?ilm=δjlδkm-δjmδkl. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices7

1. Calculer

∂?e

2. En d´eduired?eρetd?e?dans la base cart´esienne.

3. Montrer que les diff´erentielles des vecteurs de la base cylindrique peuvent se

mettre sous la forme d?e

ρ=dt?Ω??eρetd?e?=dt?Ω??e?

en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base cylindrique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base cylindrique dansR.

4. Quel est le vecteur rotation de la base sph´erique par rapport `aR? En utilisant

les r´esultats de la question pr´ec´edente, d´eduire les expressions de d?e r dt,d?eθdtetd?eφdt.

1.1.9Exercice : Mouvement rectiligne

On effectue un test d"acc´el´eration sur une voiture arrˆet´ee au d´epart (vitesse initiale

v

0= 0). La route est rectiligne.

1. La voiture est chronom´etr´ee `a 20sau bout d"une distanceD= 140m.

1-a)D´eterminer l"expression de l"acc´el´erationγ, supos´ee constante.

1-b)D´eterminer l"expression de la vitessevDatteinte `a la distanceD.

2. Calculer la distance d"arrˆetLpour une d´ec´el´eration de 8ms-2?

1.1.10Exercice : Excès de vitesse

Un conducteur roule `a une vitesse constantev0= 120 km h-1sur une route r´ecti-

ligne d´epassant la limite autoris´ee. Un gendarme `a moto d´emarre `a l"instant o`u la voiture

passe `a sa hauteur et acc´el`ere uniform´ement. Le gendarme atteint la vitesse 100 km h-1 au bout de 12s.

1. Quel sera le temps n´ecessaire au gendarme pour rattraperla voiture?

2. Quelle distance aura-t-il parcourue?

3. Quelle vitesse aura-t-il atteinte?

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

1.1.11Exercice : Mouvement circulaire uniforme

Consid´erons un satellite g´eostationnaire en mouvement circulaire uniforme autour de la Terre sur une orbite de rayonr. Il est soumis `a une acc´el´erationγ=g0?R r?

2, o`u

g

0= 9.81m s-2etR= 6400 km , le rayon de la Terre. La p´eriode de r´evolution du

satellite est ´egale `a la p´eriode de rotation de la Terre sur elle mˆeme.

1. Calculer la p´eriodeTde rotation de la Terre en secondes. En d´eduire la vitesse

angulaire Ω.

2. D´eterminer l"altitude de l"orbite g´eostationnaire.

1.1.12Exercice : Mouvement sur une ellipse

Un point mat´erielMse d´eplace sur une ellipse d"´equation en coordonn´ees cart´esiennes x2 a2+y2b2= 1, voir figure ci-contre. la direction de--→OMpar rapport `a l"axeOxest rep´er´ee par l"angle?. L"´equation horaire du mouvement deMpeut se mettre sous la forme x(t) =x0cos(ωt+φ) ety(t) =y0sin(ωt +ψ) o`u l"on suppose queωest une constante. A l"instantt= 0,

Mse trouvait enM0.

y xO M 0 M a b

1. D´eterminerx0,φetψ. En d´eduirey0.

2. D´eterminer les composantes, et ce dans la base cart´esienne, de la vitesse (x,y) et

de l"acc´el´eration (¨x,¨y).

3. Montrer que l"acc´el´eration peut se mettre sous la forme?γ=-k--→OMo`ukest `a

d´eterminer. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.2 Solutions9

1.2 Solutions

1.2.1

Corrigé 1 : Opérations sur les vecteurs

1. Soit un vecteur?V= (v1,v2,v3). On sait que la norme est donn´ee par??V?=??

i=1,3v2i. En appliquant ce r´esultat aux trois vecteurs?A(3,2,⎷3),?B(2,⎷3,⎷2) et ?C(1,2,2) , on obtient ?A?=?

32+ 22+⎷32= 4

?B?=?

22+⎷32+⎷22= 3

?C?=?

12+ 22+ 22= 3

On sait que le vecteur unitaire?uVde la direction du vecteur?V, est d´efinie par ?u V=?V /??V?. De la mˆeme mani`ere, en appliquant ce r´esultat, on obtient ?u A= (3

4,12,⎷

3 4) ?u B= (2

3,⎷

3

3,⎷

2 3) ?u C= (1

3,23,23)

2. Pour d´eterminer les cosinus des angles entre les trois vecteurs pris deux `a deux,

nous utilisons la d´efinition du produit scalaire suivante ?A·?B=??A???B?cos(??A,?B), ce qui donne cos( ??A,?B) =?A·?B ??A???B?

3×2 + 2×⎷

3 +⎷3×⎷2

4×3

?0.993 de mˆeme cos( ??B,?C) =?B·?C ??B???C?

2×1 +⎷

3×2 +⎷2×2

3×3

?0.921 Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

et enfin cos( ??C,?A) =?C·?A ??C???A?

1×3 + 2×2 + 2×⎷

3

3×4

?0.872

3. On sait que les composantes du vecteur produit vectoriel entre?uBet?uCsont

donn´ees par ?e

1=?uB??uC

3

323⎷2

323?????

,-?????2

313⎷2

323?????

,?????2

313⎷3

323??????

2(⎷

3-⎷2)

9,⎷

2-4

9,4-⎷

3 9? de mˆeme ?e

2=?uC??uA

?2 3122

3⎷

3

4?????

,-?????1 3342

3⎷

3

4?????

,????1 3342

312?????

2(⎷

3-2)

12,6-⎷

3

12,-13?

et ?e

3=?uA??uB

?1

2⎷

3

3⎷3

4⎷

2

3?????

,-?????3

423⎷3

4⎷

2

3?????

,?????3 4231

2⎷

3

3??????

2⎷

2-3

12,2⎷

3-3⎷2

12,4⎷

3-3 12?

4. Calculons sin

?(?uA,?uB). On a ??e3?=??uA???uB?sin?(?uA,?uB) =?sin?(?uA,?uB) =??e3? ?0.1198 puisque?uAet?uBsont unitaires. On utilise la mˆeme d´emarche pour les autres angles : sin ?(?uB,?uC) =??e1?= 0.3886 Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016quotesdbs_dbs13.pdfusesText_19
[PDF] degré d'avancement d'une réaction

[PDF] calculer avancement final

[PDF] avancement maximal chimie

[PDF] comment calculer xf

[PDF] calculer xf avec ph

[PDF] pack sejour sfr

[PDF] sfr pack sejour reste du monde

[PDF] sfr voyage c'est quoi

[PDF] sfr voyage tarif

[PDF] sfr international tarif

[PDF] pack sejour maroc sfr

[PDF] pack sejour sfr tunisie

[PDF] activer sfr voyage

[PDF] notice médicament en ligne

[PDF] notice médicament anglais