[PDF] Cours de mathématiques - Exo7





Previous PDF Next PDF



[PDF] Matrices - Exo7 - Cours de mathématiques

Si A est une matrice n × p alors. In · A = A et. A· Ip = A. Démonstration. 1. 1. −1. 0 −1 −1. 0. 0. −1... Une matrice qui est triangulaire ...



Fondamentaux des mathématiques 1

Fondamentaux des mathématiques 1 i. Page 2. Préambule. L'objectif de ce cours est grande démonstration des résultats. Ce ne sont des résultats plus simples ...



Préparation à la démonstration et au formalisme suppléée au

L'étape 1 de Mathématiques pour les sciences semble donc sous-tendre plusieurs objectifs d'apprentissage liés à la démonstration et au formalisme. Pour 



Chapitre 3 Dérivabilité des fonctions réelles

De même la proposition devient fausse si x0 est au bord de l'intervalle. Par exemple



7. Les différents types de démonstrations

En mathématiques une démonstration est un raisonnement qui permet



Chapitre 1 Suites réelles et complexes

Proposition 1.2.3. Toute suite extraite d'une suite convergente converge vers la même limite. Démonstration. Soit (un) une suite convergente de limite 



Cours de mathématiques - Exo7

Démonstration. 1. • Sens ⇒. Supposons f bijective. Nous allons construire une application g : F → E. Comme f est surjective alors 



FONCTION EXPONENTIELLE

f ' = f f (0) = 1 exp(0) = 1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Remarque : On prouvera dans le paragraphe II. que la 



Suites 1 Convergence

Si (u2n)n et (u2n+1)n sont convergentes de même limite l



Chapitre 1 Un peu de langage mathématique

Après le symbole ∃ on peut omettre le « tel que ». Ainsi les deux assertions précédentes peuvent s'écrire. « ∀x ∈ R



Fondamentaux des mathématiques 1

2.6 Différents modes de démonstration . Licence L1 parcours Maths-info puis cliquer sur Fondamentaux des mathématiques I.



Cours de mathématiques - Exo7

Si. A = 1 2 3. 0 1 0 et ? = 2 alors. ?A = 2 4 6. 0 2 0 . La matrice (?1)A est l'opposée de A et est notée ?A. La différence A? B est définie par A+ 



Calcul Algébrique

Mathématiques Informatique et Mathématiques Appliquées des nombres de 1 à n est n!. Démonstration : On montre le théorème par récurrence sur n.





Cours de mathématiques - Exo7

Le point clé est que l'on retrouve le terme général à partir des sommes partielles par la formule un = Sn ? Sn?1. Démonstration. Pour tout n ? 0 posons Sn = 



Logique.pdf

1 (Très) brève description des mathématiques . de qualifier de vraie toute affirmation obtenue en fin de démonstration et on appelle « théorème » une.



livre-algebre-1.pdf

La première année d'études supérieures pose les bases des mathématiques. La démonstration par récurrence se déroule en trois étapes : lors de ...



Matrices inversibles

Cours de mathématiques. ECT 2ème année. Chapitre 5 2 1. 1 1)= (. 1 0. 0 1). = I2. 3. La matrice carrée nulle On n'est pas inversible car : ?M ? Mn(R).



Chapitre IV Bases et dimension dun espace vectoriel

Proposition : [ ] n'est pas un espace vectoriel de dimension finie. Démonstration : Soit ? = ( 1 2



Cours danalyse 1 Licence 1er semestre

Démonstration. Nous allons faire une démonstration par l'absurde. 1 on peut donner un sens mathématique aux racines carrées de nombres négatifs.

SériesDans ce chapitre nous allons nous intéresser à des sommes ayant une infinité de termes. Par exemple que peut bien

valoir la somme infinie suivante : 1+12 +14 +18 +116
+=?2 11 21
4

Cette question a été popularisée sous le nom duparadoxe de Zénon. On tire une flèche à2mètres d"une cible. Elle

met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du

temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance

encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n"atteint jamais

sa cible! Zénon ne concevait pas qu"une infinité de distances finies puisse être parcourue en un temps fini. Et pourtant

nous allons voir dans ce chapitre que la somme d"une infinité de termes peut être une valeur finie.

1. Définitions - Série géométrique

1.1. DéfinitionsDéfinition 1.

Soit(uk)k>0une suite de nombres réels (ou de nombres complexes). On pose S n=u0+u1+u2++un=n X k=0u k. La suite(Sn)n>0s"appelle lasériede terme généraluk.

Cette série est notée par la somme infinieX

k>0u k. La suite(Sn)s"appelle aussi lasuite des sommes partielles.Exemple 1.

Fixonsq2C. Définissons la suite(uk)k>0paruk=qk; c"est une suite géométrique. Lasérie géométriqueX

k>0q kest la suite des sommes partielles : S

0=1S1=1+q S2=1+q+q2...Sn=1+q+q2++qn...Définition 2.

SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE2Si la suite(Sn)n>0admet une limite finie dansR(ou dansC), on note

S=+1X k=0u k=limn!+1Sn.On appelle alorsS=P+1 k=0uklasommede la sérieP k>0uk, et on dit que la série estconvergente. Sinon, on dit

qu"elle estdivergente.Notations.On peut noter une série de différentes façons, et bien sûr avec différents symboles pour l"indice :

+1X i=0u iX n2Nu nP k>0ukX u k. Pour notre part, on fera la distinction entre une série quelconque X k>0u k , et on réservera la notation +1X k=0u k

à une série

convergente ou à sa somme.

1.2. Série géométriqueProposition 1.

Soit q2C. La série géométriqueP

k>0qkest convergente si et seulement sijqj<1. On a alors+1X k=0q S n=1+q+q2+q3++qn. Écartons tout de suite le casq=1, pour lequelSn=n+1. Dans ce casSn!+1, et la série diverge.

Soitq6=1 et multiplionsSnpar 1q:

(1q)Sn= (1+q+q2+q3++qn)(q+q2+q3++qn+1) =1qn+1 DoncS n=1qn+11qSijqj<1, alorsqn!0, doncqn+1!0 et ainsiSn!11q. Dans ce cas la sérieP k>0qkconverge.

Sijqj>1, alors la suite(qn)n"a pas de limite finie (elle peut tendre vers+1, par exemple siq=2; ou bien être

divergente, par exemple siq=1). Donc sijqj>1,(Sn)n"a pas de limite finie, donc la sérieP k>0qkdiverge.Exemple 2.1.

Série géométrique de raisonq=12:

+1X k=012 k =1112=2. Cela résout le paradoxe de Zénon : la flèche arrive bien jusqu"au mur! 2. Série géométrique de raisonq=13, avec premier terme13

3. On se ramène à la série géométrique commençant à

k=0en ajoutant et retranchant les premiers termes : +1X k=313 k +1X k=013 k 113
13

2=1113

139=32

139=118.

3.Le fait de calculer la somme d"une série à partir dek=0est purement conventionnel. On peut toujours effectuer

un changement d"indice pour se ramener à une somme à partir de0. Une autre façon pour calculer la même série

+1X k=313 kque précédemment est de faire le changement d"indicen=k3 (et donck=n+3) : +1X k=313 k=+1X n=013 n+3=+1X n=013 313
n=13 3+1X n=013 n=127 1113
=118 4. +1X 2k =+1X 14 k =1114 =45 SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE3

1.3. Séries convergentesLa convergence d"une série ne dépend pas de ses premiers termes : changer un nombre fini de termes d"une série

ne change pas sa nature, convergente ou divergente. Par contre, si elle est convergente, sa somme est évidemment

modifiée.

Une façon pratique d"étudier la convergence d"une série est d"étudier son reste : lereste d"ordrend"une série

convergenteP+1 k=0ukest : R n=un+1+un+2+=+1X k=n+1u kProposition 2. Si une série est convergente, alors S=Sn+Rn(pour tout n>0) etlimn!+1Rn=0.Démonstration. •S=P+1 k=0uk=Pn k=0uk+P+1 k=n+1uk=Sn+Rn. DoncRn=SSn!SS=0 lorsquen!+1.1.4. Suites et séries

Il n"y a pas de différence entre l"étude des suites et des séries. On passe de l"une à l"autre très facilement.

Tout d"abord rappelons qu"à une sérieP

k>0uk, on associe la somme partielleSn=Pn k=0uket que par définition la série est convergente si la suite(Sn)n>0converge.

Réciproquement si on veut étudier une suite(ak)k>0on peut utiliser le résultat suivant :Proposition 3.

Unesomme télescopiqueest une série de la formeX k>0(ak+1ak). Cette série est convergente si et seulement si`:=limk!+1akexiste et dans ce cas on a : +1X k=0(ak+1ak) =`a0.Démonstration. S n=n X k=0(ak+1ak) = (a1a0)+(a2a1)+(a3a2)++(an+1an) =a0+a1a1+a2a2++anan+an+1 =an+1a0Voici un exemple très important pour la suite.

Exemple 3.

La série

+1X k=01(k+1)(k+2)=112+123+134+

est convergente et a la valeur1. En effet, elle peut être écrite comme somme télescopique, et plus précisément la

somme partielle vérifie : S n=n X k=01(k+1)(k+2)=n X

1k+11k+2‹

=11n+2!1 lorsquen!+1 Par changement d"indice, on a aussi que les sériesP+1 k=11k(k+1)etP+1 k=21k(k1)sont convergentes et de même somme1. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE4

1.5. Le terme d"une série convergente tend vers0Théorème 1.

Si la sérieP

k>0ukconverge, alors la suite des termes généraux(uk)k>0tend vers0.Le point clé est que l"on retrouve le terme général à partir des sommes partielles par la formule

u n=SnSn1.

Démonstration.Pour toutn>0, posonsSn=Pn

k=0uk. Pour toutn>1,un=SnSn1. SiP k>0ukconverge, la suite

(Sn)n>0converge vers la sommeSde la série. Il en est de même de la suite(Sn1)n>1. Par linéarité de la limite, la

suite(un)tend versSS=0.La contraposée de ce résultat est souvent utilisée : Une série dont le terme général ne tend pas vers 0 ne peut pas converger.

Par exemple les séries

P k>1(1+1k )etP k>1k2sont divergentes. Plus intéressant, la sériePukde terme général u k=1 sik=2`pour un certain`>0

0 sinon

diverge. En effet, même si les termes valant 1 sont très rares, il y en a quand même une infinité!

1.6. LinéaritéProposition 4.

SoientP+1

k=0aketP+1 k=0bkdeux séries convergentes de sommes respectivesAetB, et soient,2R(ouC). Alors la sérieP+1 k=0(ak+bk)est convergente et de sommeA+B. On a donc +1X k=0(ak+bk) =+1X k=0a k++1X k=0b k.Démonstration.A n =Pn k=0ak!A2C,Bn=Pn k=0bk!B2C. DoncPn k=0(ak+bk) =Pn k=0ak+Pn k=0bk=

An+Bn!A+B.Par exemple :

+1X 12quotesdbs_dbs50.pdfusesText_50
[PDF] démonstration nombre complexe z^n

[PDF] démonstration par récurrence d'une inégalité

[PDF] démonstration par récurrence exercices et problèmes

[PDF] démonstration par récurrence nombres complexes

[PDF] démonstration par récurrence terminale s

[PDF] démonstration somme suite géométrique

[PDF] démonstration théorème d'euler graphe

[PDF] demonstration z^n barre

[PDF] demontage banquette arriere peugeot 2008

[PDF] demontage thermomix 3000

[PDF] demontage thermomix tm21

[PDF] démontrer droite parallèle plan

[PDF] démontrer par récurrence que pour tout entier naturel n

[PDF] démontrer qu'un point est le milieu d'un segment

[PDF] démontrer qu'une fonction est croissante