[PDF] Géométrie dans lespace Si deux plans sont parallè





Previous PDF Next PDF



DROITES ET PLANS DE LESPACE

Propriété : Une droite d est parallèle à un plan P s'il existe une droite d' de P parallèle à d. Méthode : Démontrer que des droites sont orthogonales.



Méthode pour démontrer en géométrie dans lespace 1) Incidence

? Si deux droites ne sont pas parallèles ni sécantes alors elles sont non coplanaires. • droite et plan. ? Pour montrer qu'une droite est parallèle à un plan 



COMMENT DEMONTRER……………………

Propriété : Si deux droites parallèles ont au moins un point commun et (MN) sont parallèles. Pour démontrer qu'une droite est la médiatrice d'un segment.



Démontrer quun point est le milieu dun segment Démontrer que

[AB] donc le centre de son cercle circonscrit est le milieu de [AB]. P 6 Si dans un triangle



DROITES DU PLAN

Dire que deux droites sont parallèles équivaut à dire qu'elles ont des vecteurs Démontrer que les droites M et Q d'équations respectives 6 ? 10  ...



VECTEURS ET DROITES

D est une droite du plan. Les droites d'équation ax + by + c = 0 et a'x + b' y + c' = 0 sont parallèles si et ... et démontrer que les vecteurs AE.



Géométrie dans lespace

Si deux plans sont parallèles tout plan qui coupe l'un coupe l'autre



1 TS Position relative de droites et plans Cours Rappels : • Un plan

Deux droites coplanaires peuvent être soit sécantes soit parallèles. • Deux droites non coplanaires : Démontrer qu'une droite est parallèle à un plan.



1 DROITES ET PLANS DANS LESPACE

Si deux plans sont parallèles alors tout plan parallèle à l'un est parallèle à l'autre. PROPRIETE 11: Si deux droites sont parallèles



VECTEURS DROITES ET PLANS DE LESPACE

Conséquence : Pour démontrer que deux plans sont parallèles Propriété : Une droite d est parallèle à un plan P s'il existe une droite d' de P.

Terminale S

4 5

1.1. Plan de l'espace ...................................................................................................................................... 51.2. Position relative de deux droites ............................................................................................................... 6

1.3. Exercice ................................................................................................................................................. 61.4. Position relative de deux plans ................................................................................................................. 71.5. Exercice ................................................................................................................................................. 7

2.1. Droites parallèles à un plan ..................................................................................................................... 72.2. Exercice : Montrer qu'une droite est parallèle à un plan .............................................................................. 82.3. Exercice : Utiliser le théorème du toit dans un tétraèdre .............................................................................. 9

2.4. Plans parallèles ..................................................................................................................................... 102.5. Exercice : Demontrer que deux plans sont paralleles ............................................................................. 10

2.6. Exercice : Construire la section d'un solide par un plan ............................................................................. 10

3.1. Droites orthogonales .............................................................................................................................. 113.2. Orthogonalité Droite-Plan ...................................................................................................................... 11

3.3. Plan médiateur ..................................................................................................................................... 123.4. Exercice : Démontrer une orthogonalité .................................................................................................... 12

13 19 23
27
30

Rappel

Fondamental

Définition

coplanaires coplanaires On considère le parallélépipède suivant : Fondamental : Dans l'espace, deux plans peuvent être ... On considère le parallélépipède suivant :

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d' [Solution n°1 p 30] (IK)(ABC)

Indice :

On pourra montrer que est parallèle à une droite du plan (IK)(ABC) [Solution n°2 p 30] [Solution n°3 p 30]

Indice :

On pourra utiliser le théorème du toit

Fondamental : Premier théorème

Fondamental : Second théorème

[Solution n°4 p 30]

Indice :

Pour prouver que deux plans sont paralleles, il suffit de trouver deux droites secantes d'un plan qui

sont paralleles a l'autre plan. [Solution n°5 p 31]

Définition

orthogonales

Remarque

perpendiculaire

Exemple

ABCDEFGH(AE)(GH)

(AE)(GH)

Fondamental

Définition

orthogonale à un plan

Complément

Exemple

(d)BCGF(BM)(CM)

Fondamental : Propriétés

Définition

[AB]AB

Fondamental

[AB](AB) [AB] [Solution n°6 p 32] ABCD (CD)(AB)

Indices :

Dans un tétraèdre régulier, toutes les arrêtes sont de la même longueur.

On pourra construire le point milieu de I[CD]

Définition

colinéairest

Remarque

Complément

dépendants indépendantslibres [Solution n°7 p 32] [Solution n°8 p 33]

Indice :

On pourra remarquer que

[Solution n°9 p 33]

IJKL(AC)(IJKL)

Indice :

On pourra exprimer en fonction de

[Solution n°10 p 33] (BD)(IJKL)

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

[Solution n°11 p 34]

Indice :

On pourra utiliser de manière astucieuse la relation de Chalses [Solution n°12 p 34] [Solution n°13 p 34]

Indice :

Si une droite est incluse dans un plan , tout vecteur directeur de la droite est un vecteur du plan Cela est une conséquence directe de la . dernière propriété vue sur cette page* - p.27 [Solution n°14 p 34] [Solution n°15 p 35]

Indice :

On pourra utiliser un raisonnement par l'absurde.

Définition

coplanaires ABCD

Exemple

coplanaires

Fondamental

coplanaires

Complément : Démonstration

ABCD ABC ABCD D

Attention

Définition

indépendantslibres Dans le cube ci-contre, cochez les triplets de 3 vecteurs

Fondamental

coordonnéesMA

Complément : Démonstration

ABCDM ABC A M (ABC)H xyz AB

Fondamental : Coordonnées d'un vecteur

Fondamental : Coordonnées du milieu d'un segment [AB]

Fondamental : Norme d'un vecteur

Complément : Avec les coordonnées de vecteur [Solution n°16 p 35] [Solution n°17 p 35]

ABCDABCD

Fondamental

A A

Définition

représentation paramétrique

Exemple

t

Remarque

[Solution n°18 p 35] (AB)

Indice :

Un vecteur directeur de la droite est (AB)

[Solution n°19 p 35] [Solution n°20 p 36]

Indice :

Il faut déterminer s'il existe deux paramètres et permettant à un même triplet de coordonnées tt'

de vérifier les deux représentations paramétriques.(x ;y ;z) [Solution n°21 p 36] [Solution n°22 p 36] [Solution n°23 p 37]

Indice :

On pourra montrer qu'elles sont perpendiculaires

On pourra trouver deux points et respectivement sur et [Solution n°24 p 37]

Soit ABCD un tétraèdre.

I est le milieu du segment [BD] et J est le milieu du segment [BC]

L'intersection des plans (ACD) et (AIJ) est

ABCDEFGH

[EH][BF] (BIG) (AE)

Le point K

[AE] [AE] E est égal à

Les vecteurs , et sont

Le milieu du segment est :[KG]

[IB] [HJ] passe par le point de coordonnées a un vecteur directeur de coordonnées :

Les droites et sont

Le point est

Les vecteurs , et sont coplanaires

La droite est parallèle au plan (AB)(xOz)

La droite est parallèle à l'axe des ordonnées.(AB) La droite passant par le point et dirigée par et la droite (AB) sont coplanaires.

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d'

Exercice p. 10

Exercice p. 9

Exercice p. 9

Exercice p. 8

(SAC)

IK[SA][SC](IK)

(AC) (IK)(ABC)

Exercice p. 10

Pour la face AEFB

Pour la face EFGH

Pour la face CDHG

Pour la face ABCD

Pour finir

Exercice p. 14

Exercice p. 12

Méthode : 1ère méthode : A l'aide du plan médiateur ABI [CD] (CD)(AB) (AB)(CD) Méthode : 2ème méthode : Montrer que (CD) orthogonale à (ABI)

ADC(AI)A

BCD (AI)(BI)(ABI) (CD) (ABI)(CD) (AB)(CD)

Exercice p. 14

Exercice p. 14

Exercice p. 14

IJKL (AC)(IJKL)on peut affirmer - p.28 (AC)(IJKL)

Exercice p. 16

Exercice p. 16

Exercice p. 15

Exercice p. 15

(BD)(IJKL)

Utilisation de la relation de Chasles

propriétés vues précédemment - p.27

Exercice p. 21

Exercice p. 21

Exercice p. 20

Exercice p. 20

Exercice p. 16

les propriétés vues précédemment - p.27 B (AB)(CD)donc coplanaires - p.28 ABCD (AB)

Exercice p. 22

Exercice p. 22

Exercice p. 21

(x ;y ;z) (AB) t t t'

Exercice p. 22

Exercice p. 22

quotesdbs_dbs50.pdfusesText_50
[PDF] démontrer par récurrence que pour tout entier naturel n

[PDF] démontrer qu'un point est le milieu d'un segment

[PDF] démontrer qu'une fonction est croissante

[PDF] démontrer qu'une fonction est décroissante sur un intervalle

[PDF] démontrer qu'une suite est arithmético-géométrique

[PDF] démontrer que deux droites sont orthogonales produit scalaire

[PDF] démontrer que deux plans sont parallèles

[PDF] démontrer que l'affirmation l'homme descend du singe est fausse

[PDF] démontrer que les droites (ab) et (cd) sont parallèles

[PDF] démontrer suite géométrique

[PDF] démucilagination

[PDF] denis toupry

[PDF] dénoncer les travers de la société exemple

[PDF] denrées alimentaires autorisées usa

[PDF] denrées alimentaires autorisées usa 2016