[PDF] Cours : Ensembles et applications





Previous PDF Next PDF



Seconde - Les ensembles : N ; Z ; D ; Q ; R

relatifs ? petit rappel : ? L'ensemble des nombres entiers naturels est noté ?. ? = {0 ; 1 ; 2 ; 3 ; 4 



ENSEMBLES DE NOMBRES

Un nombre entier naturel est un nombre entier qui est positif. L'ensemble des nombres entiers naturels est noté ?. ?= 0;1;2;3;4..



Analyse combinatoire

6 mars 2008 +nr = n et de déterminer le nombre de découpages possibles. Exemple : L'ensemble {1



Les-ensembles-de-nombres-2nde.pdf

L'ensemble des nombres entiers naturels est noté ?. - Exemples : 0 ? ? ; 3 ? ? ; 112 ? ? L'ensemble de tous les nombres rationnels est noté ?.



Chapitre 1. Ensembles et applications.

18 févr. 2013 Ces objets sont appelés les éléments de l'ensemble. Exemples. 1) N = l'ensemble de tous les nombres entiers positifs. 2) Z = l ...



REGLES DE CALCUL ENSEMBLES DE NOMBRE

https://math.univ-angers.fr/~labatte/institut/ENSEMBLES%20DE%20NOMBRES.pdf



Chapitre4 : Lensemble N

Soit A une partie non vide majorée de N. Soit B l'ensemble des majorants de A. B ‰ H car A est majorée. Donc B admet un plus petit élément disons m.



Logique ensembles

http://exo7.emath.fr/ficpdf/fic00002.pdf



ensemble.pdf

x ? E. Deux ensembles sont égaux s'ils ont les mêmes éléments.On admet l'existence d'un ensemble n'ayant aucun élément. Cet ensemble est appelé ensemble 



Cours : Ensembles et applications

Donc y = 3 n'a pas d'antécédent et f2 n'est pas surjective. 3.2. Bijection. Définition 5. f est bijective si elle injective et surjective. Cela équivaut à : 



LES ENSEMBLES:N-Z-Q-R - Heberjahiz

La multiplication dans vérifie les propriétés suivantes: - Elle est commutative: pour tout a et b de on a a b b a - Elle est associative: pour tout a b et c de on a a b c a b c ( ) ( )



1 Les nombres entiers - Dyrassa

• L'ensemble des entiers relatifs positifs est égal à l'ensemble des entiers naturels + Z N= (1 3) • L'ensemble des entiers naturels est inclus dans l'ensemble des entiers : N Z? (1 4) • On veillera à ne pas confondre les termes de chiffre et d'entier : seuls les dix entiers

  • l’ensemble ?

    C’est l’ensemble des nombres entiers relatifs. Un entier relatif est, non seulement, un entier naturel, mais se présente aussi comme un entier naturel muni d’un signe positif ou négatif. Exemples : ….-5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8, etc.

  • l’ensemble D

    C’est l’ensemble des nombres décimaux relatifs. Un nombre décimal relatif est, non seulement, un nombre entier relatif, mais peut aussi être un nombre à virgule flottante, positif ou négatif. Exemples : ….-5, -4, -4.2, -3, -2, -1.5, -1, 0, +0.7, +1, +2, +2.4, +3, +4, +5, +6, +6.75 +7, +8, etc.

  • l’ensemble ?

    C’est l’ensemble des nombres rationnels. Un nombre rationnel est, non seulement, un nombre décimal relatif, mais peut aussi être un nombre qui peut s’exprimer avec le quotientde deux entiers relatifs. Le dénominateur étant non nul. Exemples : ….-5/4, -4, -4.2, -3, -2, -1.5, -1/2, 0, +0.7, +1, +2, +2.4, +3, +4/5, +5, +6, +6.75, +7/2, +8

  • l’ensemble ?

    C’est l’ensemble des nombres réels. Un nombre réel est non seulement un nombre rationnel, mais peut aussi être un nombre dont le développement décimal est infini, et non périodique. Exemples : ….-5/4, -4, -4.2, -3, -2, -1.524, -1/2, 0, +0.7, +1, +2, +2.41, +3, +4/5, +5, +6, +6.75, +7/2, +8…

Quels sont les deux ensembles importants?

THÉORIE 1. LES ENSEMBLES – Voici deux ensembles importants: = { 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; … } s’appelle l’ensemble des nombres naturels, ou encore l’ensemble des entiers naturels. = { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; … } s’appelle l’ensemble des nombres naturels positifs, ou encore l’ensemble des entiers positifs.

Quels sont les ensembles optionnels de l’EQS?

Les ensembles optionnels de l’EQS vous permettent de baigner dans un luxe encore plus opulent. L’Ensemble Haut de gamme regroupe des équipements comme des sièges avant à fonction massage et à ventilation rafraîchissante, et quatre zones de climatisation.

Quels sont les ensembles de musique?

Ensemble de Ukulélés Ensemble de Percussions Cordes (Ensemble) Bois (Ensemble) Trompettes (Ensemble) Ensemble de Cuivres Ensemble à Vents

Quels sont les différents types de ensembles?

Ensemble de Percussions Cordes (Ensemble) Bois (Ensemble) Trompettes (Ensemble) Ensemble de Cuivres Ensemble à Vents Ensemble de Chambre Ensembles Divers

Ensembles et applications

MotivationsAu début duXXesiècle le professeur Frege peaufinait la rédaction du second tome d"un ouvrage qui souhaitait refonder

les mathématiques sur des bases logiques. Il reçut une lettre d"un tout jeune mathématicien :" J"ai bien lu votre premier

livre. Malheureusement vous supposez qu"il existe un ensemble qui contient tous les ensembles. Un tel ensemble ne peut

exister. »S"ensuit une démonstration de deux lignes. Tout le travail de Frege s"écroulait et il ne s"en remettra jamais.

Le jeune Russell deviendra l"un des plus grands logiciens et philosophes de son temps. Il obtient le prix Nobel de

littérature en 1950.

Voici le " paradoxe de Russell » pour montrer que l"ensemble de tous les ensembles ne peut exister. C"est très bref,

mais difficile à appréhender. Par l"absurde, supposons qu"un tel ensembleEcontenant tous les ensembles existe.

Considérons

F=¦

E∈ E |E/∈E©

Expliquons l"écritureE/∈E: leEde gauche est considéré comme un élément, en effet l"ensembleEest l"ensemble de

tous les ensembles etEest un élément de cet ensemble; leEde droite est considéré comme un ensemble, en effet les

élément deEsont des ensembles! On peut donc s"interroger si l"élémentEappartient à l"ensembleE. Si non, alors

par définition on metEdans l"ensembleF.

La contradiction arrive lorsque l"on se pose la question suivante : a-t-onF∈FouF/∈F? L"une des deux affirmation

doit être vraie. Et pourtant :

SiF∈Falors par définition deF,Fest l"un des ensemblesEtel queF/∈F. Ce qui est contradictoire.

SiF/∈FalorsFvérifie bien la propriété définissantFdoncF∈F! Encore contradictoire.

Aucun des cas n"est possible. On en déduit qu"il ne peut exister un tel ensembleEcontenant tous les ensembles.

Ce paradoxe a été popularisé par l"énigme suivante :" Dans une ville, le barbier rase tous ceux qui ne se rasent pas

eux-mêmes. Qui rase le barbier? »La seule réponse valable est qu"une telle situation ne peut exister.

Ne vous inquiétez pas, Russell et d"autres ont fondé la logique et les ensembles sur des bases solides. Cependant il

n"est pas possible dans ce cours de tout redéfinir. Heureusement, vous connaissez déjà quelques ensembles :

l"ensemble des entiers naturelsN={0,1,2,3,...}. l"ensemble des entiers relatifsZ={...,-2,-1,0,1,2,...}. l"ensemble des rationnelsQ=pq |p∈Z,q∈N\{0}. l"ensemble des réelsR, par exemple 1,p2,π, ln(2),... l"ensemble des nombres complexesC.

ENSEMBLES ET APPLICATIONS1. ENSEMBLES2Nous allons essayer de voir les propriétés des ensembles, sans s"attacher à un exemple particulier. Vous vous apercevrez

assez rapidement que ce qui est au moins aussi important que les ensembles, ce sont les relations entre ensembles : ce

sera la notion d"application (ou fonction) entre deux ensembles.

1. Ensembles

1.1. Définir des ensembles

On va définir informellement ce qu"est un ensemble : unensembleest une collection d"éléments.

Exemples :

{0,1},{rouge,noir},{0,1,2,3,...}=N.

Un ensemble particulier est l"ensemble vide, noté∅qui est l"ensemble ne contenant aucun élément.

On notex∈Esixest un élément deE, etx/∈Edans le cas contraire.

Voici une autre façon de définir des ensembles : une collection d"éléments qui vérifient une propriété.

Exemples :x∈R| |x-2|<1,z∈C|z5=1,x∈R|0⩽x⩽1= [0,1].

1.2. Inclusion, union, intersection, complémentaire

L"inclusion.E⊂Fsi tout élément deEest aussi un élément deF. Autrement dit :∀x∈E(x∈F). On dit alors

queEest unsous-ensembledeFou unepartiedeF. L"égalité.E=Fsi et seulement siE⊂FetF⊂E. Ensemble des partiesdeE. On noteP(E)l"ensemble des parties deE. Par exemple siE={1,2,3}: P({1,2,3}) =∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.

Complémentaire. SiA⊂E,∁

EA=x∈E|x/∈AOn le note aussiE\Aet juste∁As"il n"y a pas d"ambiguïté (et parfois aussiAcouA).A∁

EAE

Union. PourA,B⊂E,A∪B=x∈E|x∈Aoux∈BLe" ou »n"est pas exclusif :xpeut appartenir àAet àBen même temps.ABA∪B•

ENSEMBLES ET APPLICATIONS1. ENSEMBLES3

1.3. Règles de calculs

SoientA,B,Cdes parties d"un ensembleE.

A∩B=B∩A

A∩(B∩C) = (A∩B)∩C(on peut donc écrireA∩B∩Csans ambigüité)

A∪B=B∪A

A∪(B∪C) = (A∪B)∪C(on peut donc écrireA∪B∪Csans ambiguïté)

•A∩(B∪C) = (A∩B)∪(A∩C)•A∪(B∩C) = (A∪B)∩(A∪C)•

∁∁A=Aet doncA⊂B⇐⇒∁B⊂∁A ∁(A∩B) =∁A∪∁B ∁(A∪B) =∁A∩∁B

Voici les dessins pour les deux dernières assertions.AB∁AAB∁BABA∩B∁(A∩B) =∁A∪∁BABA∪B∁(A∪B) =∁A∩∁BLes preuves sont pour l"essentiel une reformulation des opérateurs logiques, en voici quelques-unes :

•Preuve deA∩(B∪C) = (A∩B)∪(A∩C):x∈A∩(B∪C)⇐⇒x∈Aetx∈(B∪C)⇐⇒x∈Aet(x∈Boux∈

Preuve de∁(A∩B)=∁A∪∁B:x∈∁(A∩B)⇐⇒x/∈(A∩B)⇐⇒nonx∈A∩B⇐⇒nonx∈Aetx∈

B⇐⇒non(x∈A)ou non(x∈B)⇐⇒x/∈Aoux/∈B⇐⇒x∈∁A∪∁B.

Remarquez que l"on repasse aux éléments pour les preuves.

1.4. Produit cartésien

SoientEetFdeux ensembles. Leproduit cartésien, notéE×F, est l"ensemble des couples(x,y)oùx∈Eety∈F.

Exemple 1.

1.

V ousconnaissez R2=R×R=(x,y)|x,y∈R.

2. Autre exemple [0,1]×R=(x,y)|0⩽x⩽1,y∈R

ENSEMBLES ET APPLICATIONS2. APPLICATIONS4xy

01

3.[0,1]×[0,1]×[0,1] =(x,y,z)|0⩽x,y,z⩽1xy

z 011 1

Mini-exercices.

1. En utilisant les définitions, montrer : A̸=Bsi et seulement s"il existea∈A\Boub∈B\A. 2.

Énumérer P({1,2,3,4}).

3. Montrer A∪(B∩C) = (A∪B)∩(A∪C)et∁(A∪B) =∁A∩∁B. 4.

Énumérer {1,2,3}×{1,2,3,4}.

5.Représenter les sous-ensembles deR2suivants :]0,1[∪[2,3[×[-1,1],R\(]0,1[∪[2,3[)×(R\[-1,1])∩

[0,2].2. Applications

2.1. Définitions

Uneapplication(ou unefonction)f:E→F, c"est la donnée pour chaque élémentx∈Ed"un unique élément de

Fnotéf(x).

Nous représenterons les applications par deux types d"illustrations : les ensembles " patates », l"ensemble de départ

(et celui d"arrivée) est schématisé par un ovale ses éléments par des points. L"associationx7→f(x)est représentée

par une flèche.xf(x)EFf

L"autre représentation est celle des fonctions continues deRdansR(ou des sous-ensembles deR). L"ensemble de

départRest représenté par l"axe des abscisses et celui d"arrivée par l"axe des ordonnées. L"associationx7→f(x)

est représentée par le point(x,f(x)).

ENSEMBLES ET APPLICATIONS2. APPLICATIONS5xy

xf(x)•Égalité. Deux applicationsf,g:E→Fsont égales si et seulement si pour toutx∈E,f(x) =g(x). On note alors

f=g.

Legraphedef:E→FestΓ

f=¦x,f(x)∈E×F|x∈E©xy f•

Composition. Soientf:E→Fetg:F→Galorsg◦f:E→Gest l"application définie parg◦f(x) =gf(x).EFGfg

g◦f• Restriction. Soientf:E→FetA⊂Ealors la restriction defàAest l"application f |A:A-→F x7-→f(x)

Exemple 2.

1.

L "identité, idE:E→Eest simplement définie parx7→xet sera très utile dans la suite.

2.

Définissons f,gainsi

f:]0,+∞[-→]0,+∞[ x7-→1x ,g:]0,+∞[-→R x7-→x-1x+1. Alorsg◦f:]0,+∞[→Rvérifie pour toutx∈]0,+∞[: =1x -11 x +1=1-x1+x=-g(x).

2.2. Image directe, image réciproque

SoientE,Fdeux ensembles.Définition 1.

SoitA⊂Eetf:E→F, l"image directedeAparfest l"ensemblef(A) =f(x)|x∈A

ENSEMBLES ET APPLICATIONS2. APPLICATIONS6EF

Af(A)f

xy

Af(A)Définition 2.

SoitB⊂Fetf:E→F, l"image réciproquedeBparfest l"ensemblef -1(B) =x∈E|f(x)∈BEF f -1(B)Bf xy B f -1(B)Remarque. Ces notions sont plus difficiles à maîtriser qu"il n"y paraît! f(A)est un sous-ensemble deF,f-1(B)est un sous-ensemble deE.

•La notation "f-1(B)» est un tout, rien ne dit quefest un fonction bijective (voir plus loin). L"image réciproque

existe quelque soit la fonction.

L"image directe d"un singletonf({x}) =f(x)est un singleton. Par contre l"image réciproque d"un singleton

f-1{y}dépend def. Cela peut être un singleton, un ensemble à plusieurs éléments; mais cela peut-êtreEtout

entier (sifest une fonction constante) ou même l"ensemble vide (si aucune image parfne vauty).

2.3. Antécédents

Fixonsy∈F. Tout élémentx∈Etel quef(x) =yest unantécédentdey. En termes d"image réciproque l"ensemble des antécédents deyestf-1({y}). Sur les dessins suivants, l"élémentyadmet 3 antécédents parf. Ce sontx1,x2,x3.EFf yx 1x 2x 3xy x 1x 2x 3y

Mini-exercices.

1. P ourdeux applications f,g:E→F, quelle est la négation def=g? 2. R eprésenterle graphe de f:N→Rdéfinie parn7→4n+1. 3.

Soient f,g,h:R→Rdéfinies parf(x) =x2,g(x) =2x+1,h(x) =x3-1. Calculerf◦(g◦h)et(f◦g)◦h.

4.

Pour la fonctionf:R→Rdéfinie parx7→x2représenter et calculer les ensembles suivants :f([0,1[),f(R),

ENSEMBLES ET APPLICATIONS3. INJECTION,SURJECTION,BIJECTION7

3. Injection, surjection, bijection

3.1. Injection, surjection

SoitE,Fdeux ensembles etf:E→Fune application.Définition 3.

festinjectivesi pour toutx,x′∈Eavecf(x) =f(x′)alorsx=x′. Autrement dit :∀x,x′∈Ef(x) =f(x′) =⇒x=x′Définition 4.

festsurjectivesi pour touty∈F, il existex∈Etel quey=f(x). Autrement dit :∀y∈F∃x∈Ey=f(x)Une autre formulation :fest surjective si et seulement sif(E) =F.

Les applicationsfreprésentées sont injectives :EFf xy EF) Les applicationsfreprésentées sont surjectives :EFf xy EF

Remarque.Encore une fois ce sont des notions difficiles à appréhender. Une autre façon de formuler l"injectivité et la surjectivité

est d"utiliser les antécédents.

fest injective si et seulement si tout élémentydeFaau plusun antécédent (et éventuellement aucun).

fest surjective si et seulement si tout élémentydeFaau moinsun antécédent.

Remarque.

Voici deux fonctions non injectives :EFf

yxx ′xy xx ′y ENSEMBLES ET APPLICATIONS3. INJECTION,SURJECTION,BIJECTION8

Ainsi que deux fonctions non surjectives :EFf

xy EF )y

Exemple 3.

1.Soitf1:N→Qdéfinie parf1(x) =11+x. Montrons quef1est injective : soitx,x′∈Ntels quef1(x) =f1(x′). Alors

11+x=11+x′, donc 1+x=1+x′et doncx=x′. Ainsif1est injective.

Par contref1n"est pas surjective. Il s"agit de trouver un élémentyqui n"a pas d"antécédent parf1. Ici il est facile

de voir que l"on a toujoursf1(x)⩽1et donc par exempley=2n"a pas d"antécédent. Ainsif1n"est pas surjective.

2.Soitf2:Z→Ndéfinie parf2(x) =x2. Alorsf2n"est pas injective. En effet on peut trouver deux élémentsx,x′∈Z

différents tels quef2(x) =f2(x′). Il suffit de prendre par exemplex=2,x′=-2. f 2

n"est pas non plus surjective, en effet il existe des élémentsy∈Nqui n"ont aucun antécédent. Par exemple

y=3: siy=3avait un antécédentxparf2, nous aurionsf2(x) =y, c"est-à-direx2=3, d"oùx=±p3. Mais

alorsxn"est pas un entier deZ. Doncy=3 n"a pas d"antécédent etf2n"est pas surjective.

3.2. BijectionDéfinition 5.

f

estbijectivesi elle injective et surjective. Cela équivaut à : pour touty∈Fil existe un uniquex∈Etel que

y=f(x). Autrement dit :∀y∈F∃!x∈Ey=f(x)

L"existence duxvient de la surjectivité et l"unicité de l"injectivité. Autrement dit, tout élément deFa un unique

antécédent parf.EFf xy EF

Proposition 1.

Soit E,F des ensembles et f:E→F une application. 1.

L"applicationfest bijective si et seulement si il existe une applicationg:F→Etelle quef◦g=idFetg◦f=idE.

2.Sifest bijective alors l"applicationgest unique et elle aussi est bijective. L"applicationgs"appelle labijection

réciproquede f et est notée f-1. De plusf-1-1=f .Remarque. f◦g=idFse reformule ainsi ∀y∈F fg(y)=y.

Alors queg◦f=idEs"écrit :

∀x∈E gf(x)=x.

ENSEMBLES ET APPLICATIONS4. ENSEMBLES FINIS9

•Par exemplef:R→]0,+∞[définie parf(x) =exp(x)est bijective, sa bijection réciproque estg:]0,+∞[→R

définie parg(y) =ln(y). Nous avons bienexpln(y)=y, pour touty∈]0,+∞[etlnexp(x)=x, pour tout

x∈R.

Démonstration.

1.

Sens⇒. Supposonsfbijective. Nous allons construire une applicationg:F→E. Commefest surjective

alors pour chaquey∈F, il existe unx∈Etel quey=f(x)et on poseg(y) =x. On afg(y)=f(x) =y,

ceci pour touty∈Fet doncf◦g=idF. On compose à droite avecfdoncf◦g◦f=idF◦f. Alors pour tout

x∈Eon afg◦f(x)=f(x)orfest injective et doncg◦f(x) =x. Ainsig◦f=idE. Bilan :f◦g=idFet

g◦f=idE. Sens⇐. Supposons quegexiste et montrons quefest bijective. -f

est surjective : en effet soity∈Falors on notex=g(y)∈E; on a bien :f(x) =fg(y)=f◦g(y) =

idF(y) =y, doncfest bien surjective. -f

estinjective : soientx,x′∈Etels quef(x) =f(x′). On compose parg(à gauche) alorsg◦f(x) =g◦f(x′)

donc idE(x) =idE(x′)doncx=x′;fest bien injective. 2.

Sifest bijective alorsgest aussi bijective carg◦f=idEetf◦g=idFet on applique ce que l"on vient de

démontrer avecgà la place def. Ainsig-1=f.

Sifest bijective,gest unique : en effet soith:F→Eune autre application telle queh◦f=idEetf◦h=idF;

en particulierf◦h=idF=f◦g, donc pour touty∈F,fh(y)=fg(y)orfest injective alorsh(y) =g(y),

ceci pour touty∈F; d"oùh=g.Proposition 2.

Soientf:E→Fetg:F→Gdes applications bijectives. L"applicationg◦fest bijective et sa bijection réciproque est(g◦f)-1=f-1◦g-1Démonstration.

D"après la proposition

1 , il existeu:F→Etel queu◦f=idEetf◦u=idF. Il existe aussiv:G→F

tel quev◦g=idFetg◦v=idG. On a alors(g◦f)◦(u◦v) =g◦(f◦u)◦v=g◦idF◦v=g◦v=idE. Et

(u◦v)◦(g◦f) =u◦(v◦g)◦f=u◦idF◦f=u◦f=idE. Doncg◦fest bijective et son inverse estu◦v. Commeu

est la bijection réciproque defetvcelle degalors :u◦v=f-1◦g-1.Mini-exercices. 1. Les fonctions suivantes sont-elles injectives, surjectives, bijectives ? f1:R→[0,+∞[,x7→x2. f3:N→N,x7→x2. f4:Z→Z,x7→x-7. f5:R→[0,+∞[,x7→ |x|. 2.

Montrer que la fonctionf:]1,+∞[→]0,+∞[définie parf(x) =1x-1est bijective. Calculer sa bijection

réciproque.4. Ensembles finis

4.1. CardinalDéfinition 6.

Un ensembleEestfinis"il existe un entiern∈Net une bijection deEvers{1,2,...,n}. Cet entiernest unique et

s"appelle lecardinaldeE(ou lenombre d"éléments) et est noté CardE.Quelques exemples :

1.E={rouge,noir}est en bijection avec{1,2}et donc est de cardinal 2.

ENSEMBLES ET APPLICATIONS4. ENSEMBLES FINIS10

2.Nn"est pas un ensemble fini.

3. P ardéfinition le cardinal de l"ensemble vide est 0.

Enfin quelques propriétés :

1.quotesdbs_dbs26.pdfusesText_32
[PDF] etudier la parité des nombres

[PDF] demontrer que le produit de deux nombres impairs est impair

[PDF] nombre entier impair

[PDF] comment reconnaitre un acide dune base

[PDF] oxygène formule

[PDF] montrer par récurrence =(n(n 1)(2n 1))/6

[PDF] démonstration par récurrence n(n+1)/2

[PDF] n(n 1)(2n 1)/6 demonstration

[PDF] bar en kg

[PDF] kg/cm2 en bar

[PDF] 10 psi en bar

[PDF] convertir pascal en bar

[PDF] convertir mpa en bar

[PDF] 1 mega pa en bar

[PDF] 1 bar en hectopascal