[PDF] Suites Montrer que pour tout entier





Previous PDF Next PDF



Suites

Montrer que pour tout entier naturel n on a ?n k=0. 1 ukuk+1. = n+1 Soient (un) et (vn) les suites définies par la donnée de u0 et v0 et les relations ...



Feuille dexercices n°1 : Suites réelles

b. u0 = 1; u1 = 1 et ?n ? N un+2 = 3un+1 ? 2un. c. u0 = 1; u1 = 1 et On considère la suite (un)n?1 définie par u1 = 1 et pour tout entier naturel.



1 On considère la suite (un) définie par u0 = 1 2 et telle que pour

On considère la suite (un) définie par u0 = 1. 2 et telle que pour tout entier naturel n un + 1 = 3un. 1 + 2un . 1-a) Calculer u1 et u2 . u1 = 3u0. 1 + 



Chapitre 1 Suites réelles et complexes

Exemple. La suite de Syracuse d'un nombre entier N est définie par récurrence de la mani`ere suivante : u0 = N et pour tout entier n ? 0 : un+1 = {.



S Polynésie juin 2013

On considère la suite ( un ) définie par u0= 1. 2 et telle que pour tout entier naturel n un+1= 3un. 1+2un. 1. a. Calculer u1 et u2 .



1 Exercices à savoir faire

1. Montrer que pour tout entier n 4n + 5 est un multiple de 3. Soit (un) la suite définie par récurrence par la relation un+1 = 3un + 2 et u0 = 1. 1.



Suites 1 Convergence

Soit u0 = 1. 2 et pour tout n ? N un+1 = (1?un)2. Calculer les limites des suites (u2n)n et (u2n+1)n. Indication ?. Correction ?.



Corrigé du baccalauréat S Antilles-Guyane 6 septembre 2018

Sep 6 2018 CANDIDATS AYANT SUIVI L'ENSEIGNEMENT DE SPÉCIALITÉ. Soit la suite (un) définie par u0 = 0 et



SUITES NUMÉRIQUES : exercices - page 1

On considère une suite u définie sur ? de premier premier terme d'indice 0. 3 ) u0=1 u1=?1 et



Algorithme et suite

On considère la suite (un) définie par u0 = 0 et pour tout entier naturel n



[PDF] 1 On considère la suite (un) définie par u0 = 1 2 et telle que pour

On considère la suite (un) définie par u0 = 1 2 et telle que pour tout entier naturel n un + 1 = 3un 1 + 2un 1-a) Calculer u1 et u2 u1 = 3u0 1 + 



[PDF] S Polynésie juin 2013 - Meilleur En Maths

On considère la suite ( un ) définie par u0= 1 2 et telle que pour tout entier naturel n un+1= 3un 1+2un 1 a Calculer u1 et u2



[PDF] Feuille dexercices n°1 : Suites réelles - Arnaud Jobin

1 ? e?x si x ? 0 On considère la suite (un)n?1 définie par u1 = 1 et pour tout entier naturel non nul n par : un 



[PDF] On considère la suite (un) définie par u0 = 0 et pour tout entier

EXERCICE 1 : On considère la suite (un) définie par u0 = 0 et pour tout entier naturel n un+1 = un + 2n + 2 1 £?? §?£?? §? u1 §? u2º u1 = u0 + 2 × 0+2= 



[PDF] Algorithme et suite

On considère la suite (un) définie par u0 = 0 et pour tout entier naturel n un+1= 3un ?2n +3 1 Calculer u1 et u2 2 a Démontrer par récurrence que 



[PDF] Correction du devoir commun TS 15 décembre 2012

15 déc 2012 · On considère la suite (un) définie par u0 = 0 et pour tout entier naturel n un+1 = 3un ? 2n + 3 1 Calcul de u1 et u2 : u1 = 3u0 ? 2 × 0+3



[PDF] Suites - Exo7 - Exercices de mathématiques

En additionnant et en retranchant les deux égalités précédentes on obtient pour tout entier naturel n : un = 1 2 ( v0 +u0 + 1 3n (v0 ? 



[PDF] s3585 - On considère la suite u définie sur IN par u0 = 3 2 et un + 1

1 Solution – Suites Numériques – Raisonnement par récurrence – s3585 2 – 2un + 2 pour tout entier naturel n 1/ En 2 – 2uk + 1 = (uk – 1)2 ? 0



[PDF] Corrigé du baccalauréat S Antilles-Guyane 6 septembre 2018

6 sept 2018 · CANDIDATS N'AYANT PAS SUIVI L'ENSEIGNEMENT DE SPÉCIALITÉ On considère la suite (un) définie par u0 = 1 et pour tout entier naturel n un+1 = e 



[PDF] Exercice 1 On définit la suite (un) par u0 = 2 et un+1 = u2

Que dire des sens de variations des sous-suites u2n et u2n+1 ? 4 Montrer que pour tout entier naturel n on a un+1 ? 1 ? 2 3

:
Exo7

Suites

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1***ITSoient(un)n2Nune suite réelle et(vn)n2Nla suite définie par :8n2N;vn=u0+u1+:::+unn+1.

1.

Montrer que si la suite (un)n2Nvers un réel`, la suite(vn)n2Nconverge et a pour limite`. Réciproque ?

2. Montrer que si la suite (un)n2Nest bornée, la suite(vn)n2Nest bornée. Réciproque ? 3. Montrer que si la suite (un)n2Nest croissante alors la suite(vn)n2Nl"est aussi. alors la suite(un)n2Nconverge. (série harmonique). 1. Montrer que : 8n2N;ln(n+1)0un+1. n!+¥ånk=111

2+22+:::+k2.

u n+1=un+vn2 etvn+1=pu n+1vn. Montrer que les suites(un)et(vn)sont adjacentes et que leur limite commune est égale à bsin(arccos(ab ))arccos(ab 1 1. sinnn 2. 1+1n n, 3. n!n n, 4.

E((n+12

)2)E ((n12 )2)), 5. npn 2, 6. pn+1pn, 7.

ånk=1k2n

3, 8.

Õnk=12k=22k.

pn+un.

1.8n2N;un+1=un32un,

2.8n2N;un+1=4(un1)u

n(ne pas se poser de questions d"existence). u n+1=2un+vn3 etvn+1=un+2vn3

Etudier les suitesuetvpuis déterminerunetvnen fonction denen recherchant des combinaisons linéaires

intéressantes deuetv. En déduire limn!+¥unet limn!+¥vn. u n+1=vn+wn2 ;vn+1=un+wn2 etwn+1=un+vn2 Etudier les suitesu,vetwpuis déterminerun,vnetwnen fonction denen recherchant des combinaisons linéaires intéressantes deu,vetw. En déduire limn!+¥un, limn!+¥vnet limn!+¥wn.

Exercice 12***Montrer que les suites définies par la donnée deu0,v0etw0réels tels que 0 récurrence : 3u n+1=1u n+1v n+1w netvn+1=3pu nvnwnetwn+1=un+vn+wn3 ont une limite commune que l"on ne cherchera pas à déterminer. n)converge vers un

réel positifl. Montrer que si 06` <1, la suite(un)converge vers 0 et si` >1, la suite(vn)tend vers+¥.

Montrer que si`=1, tout est possible.

n)converge vers un réel`, alors npu n)converge et a même limite. 2.

Etudier la réciproque.

3.

Application : limites de

(a) npC n2n, (b) nn pn!, (c) 1n

2nq(3n)!n!.

vers 1. netvn=1+1n n+1.

Etudier les deux suitesun=

ånk=11pk

2pn+1 etvn=

ånk=11pk

2pn. 3 Exercice 20**TDéterminerunen fonction denet de ses premiers termes dans chacun des cas suivants :

1.8n2N;4un+2=4un+1+3un.

2.8n2N;4un+2=un.

3.8n2N;4un+2=4un+1+3un+12.

4.8n2N;2u

n+2=1u n+11u n.

5.8n>2;un=3un12un2+n3.

6.8n2N;un+36un+2+11un+16un=0.

7.8n2N;un+42un+3+2un+22un+1+un=n5.

n. Montrer que limn!+¥(unpn) =12 cos p2 n=12 q2+p2+:::+p2 (n1 radicaux) et sinp2 n=12 q2p2+:::+p2 (n1 radicaux).

En déduire lim

n!+¥2nq2p2+:::+p2 (nradicaux). 2.

Montrer que

Õnk=11+1k

kMontrer que si a2pest rationnel, les suitesuetvsont périodiques et montrer dans ce cas que(un)et(vn) convergent si et seulement sia22pZ. 2.

On suppose dans cette question que

a2pest irrationnel . (a) Montrer que (un)converge si et seulement si(vn)converge . (b)

En utilisant dif férentesformules de trigonométrie fournissant des relations entre unetvn, montrer

par l"absurde que(un)et(vn)divergent. 3.

On suppose toujours que

a2pest irrationnel. On veut montrer que l"ensemble des valeurs de la suite(un) (ou(vn)) est dense dans[1;1], c"est-à-dire que8x2[1;1];8e>0;9n2N=junxj0 pour en déduire quea2p2Q). (c)

Conclure.

a2]0;p[(supn2N(jsin(na)j)). . Montrer que(un)converge vers 12 Correction del"exer cice1 N1.Soit e>0. Il existe un rangn0tel que, sin>n0alorsjun`j1n+1nå k=0u k`

1n+1nå

k=0(uk`) 6

1n+1nå

k=0juk`j=1n+1n 0å k=0juk`j+1n+1nå k=n0+1juk`j 6 1n+1n 0å k=0juk`j+1n+1nå k=n0+1e2

61n+1n

0å k=0juk`j+1n+1nå k=0e2 1n+1n 0å k=0juk`j+e2

Maintenant,

ån0k=0juk`jest une expression constante quandnvarie et donc, limn!+¥1n+1ån0k=0juk`j=

0. Par suite, il existe un entiern1>n0tel que pourn>n1,1n+1ån0k=0juk`j . Pourn>n1, on a alors jvn`j0;9n12N=(8n2N)(n>n1) jvn`jSi la suiteuconverge vers`alors la suitevconverge vers`.La réciproque est fausse. PourndansN, posonsun= (1)n. La suite(un)est divergente. D"autre part,

pourndansN,ånk=0(1)kvaut 0 ou 1 suivant la parité denet donc, dans tous les cas,jvnj61n+1. Par suite, la suite(vn)converge et limn!+¥vn=0. 2.

Si uest bornée, il existe un réelMtel que, pour tout natureln,junj6M. Pournentier naturel donné, on

a alorsquotesdbs_dbs42.pdfusesText_42

[PDF] on considere la suite (un) definie par u0=1 et pour tout entier naturel n

[PDF] aujourd'hui traduction espagnol

[PDF] aujourd'hui traduction arabe

[PDF] aujourd'hui traduction allemand

[PDF] comment dit on demain en anglais

[PDF] un+1=1/3un+n-2 correction

[PDF] on considere la suite un definie par u0=1 et pour tout n de n un+1=un+2n+3

[PDF] aujourd'hui traduction anglais

[PDF] on considere la suite (un) definie par u0=1 et pour tout entier naturel n un+1=1/3un+n-2

[PDF] aujourd'hui traduction italien

[PDF] on considere la suite (un) definie par u0=1 et pour tout entier naturel n un+1=1/3un+4

[PDF] un 1 1 3un n 2 algorithme

[PDF] on considere la suite (un) définie par u0=1 et un+1=un+2n+3

[PDF] on considère la suite (un) définie par u0=1 et pour tout entier naturel n un+1=

[PDF] corrigé polynésie 2013 maths