[PDF] SUITES ARITHMÉTICO- GÉOMÉTRIQUES





Previous PDF Next PDF



Suites arithmético-géométriques et récurrentes linéaires dordre 2

23 nov. 2021 Définition 1 – Suites arithmético-géométriques. On dit qu'une suite (un) n?Nest une suite arithmético-géométrique lorsqu'il existe (a ...



SUITES ARITHMÉTICO- GÉOMÉTRIQUES

I. Etude d'une suite arithmético-géométrique. Définition : Une suite (un) est dite arithmético-géométrique s'il existe deux nombres a.



Fiche méthode 6 : Plan détude des suites arithmético-géométriques

Plan d'étude des suites arithmético-géométriques. Le contexte : on considère une suite définie par la donnée de son premier terme u0 et une relation de.



Suites arithmético-géométriques Limite et somme dune suite

EXERCICE 6.1 : Etude d'une suite arithmético-géométrique. Dans une réserve naturelle une race de singes est en voie d'extinction à cause d'une maladie.



Convergence des suites numériques

Remarque : Méthode générale pour les suites arithmético-géométriques. Soient a et b deux réels avec a = 1. Soit (un) la suite arithmético-géométrique définie 



V. Suites arithmético-géométriques 1. Définition : Une suite

Si = 0 la suite ( ) est géométrique de raison . 2. Etude d'une suite arithmético-géométrique. Un loueur de voitures dispose au 1er mars 2015 d'un 



Des outils pour les suites

Définition : On appelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers : • Si  



SUITES NUMERIQUES

une suite arithmético-géométrique définie par son premier terme 0 u et la l'étude des propriétés de f permettra l'étude de la suite.



Cours de maths S/STI/ES - Suites et convergences

Suites arithmétiques géométriques et arithmético-géométriques Etude de la convergence d'une suite : théorème de convergence monotone



Étude des suites arihmético-géométriques.

18 nov. 2009 Étude des suites arihmético-géométriques. Ces suites sont de la forme { u0=k un+1=aun+b. Si a = 1 la suite (un) est arithmétique.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1SUITES ARITHMÉTICO-GÉOMÉTRIQUES I. Etude d'une suite arithmético-géométrique Définition : Une suite (un) est dite arithmético-géométrique s'il existe deux nombres a et b tels que pour tout entier n, on a :

u n+1 =au n +b

. Un investisseur dépose 5000 € sur un compte rémunéré à 3% par an. Chaque année suivante, il dépose 300€ de plus. On note (un) la somme épargnée à l'année n. On a alors :

u n+1 =1,03u n +300
et u 0 =5000

La suite (un) est arithmético-géométrique. 1) À l'aide du tableur, calculer la somme totale épargnée à la 10ème année. 2) Prouver que la suite (vn) définie pour tout entier n par

v n =u n +10000

est géométrique et donner sa raison et son premier terme. 3) Exprimer vn en fonction de n. 4) En déduire un en fonction de n. Retrouver alors le résultat de la question 1 par calcul. 5) Etudier les variations de (un). 6) Calculer la limite de (un). Vidéo https://youtu.be/6-vFnQ6TghM Vidéo https://youtu.be/0CNt_fUuwEY Vidéo https://youtu.be/EgYTH79sDfw 1) Avec le tableur, on obtient : La somme totale épargnée à la 10ème année est égale à environ 10158,75 €.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 2) v n+1 =u n+1 +10000
=1,03u n +300+10000
=1,03u n +10300
=1,03u n +10000
=1,03v n Donc (vn) est une suite géométrique de raison 1,03 et de premier terme v 0 =u 0 +10000=5000+10000=15000
. 3) Pour tout n, v n =15000×1,03 n . 4) Pour tout n, u n =15000×1,03 n -10000 . On a alors : u 10 =15000×1,03 10 -10000≈10158,75

5) Pour tout n,

u n+1 -u n =15000×1,03 n+1 -10000-15000×1,03 n -10000 =15000×1,03 n+1 -1,03 n =15000×1,03 n

×1,03-1

=450×1,03 n >0 Donc la suite (un) est strictement croissante. 6) Comme 1,03 > 1, lim n→+∞ 1,03 n donc lim n→+∞

15000×1,03

n

Et donc

lim n→+∞

15000×1,03

n -10000 , soit : lim n→+∞ u n

. II. Représentation graphique d'une suite arithmético-géométrique Soit (un) la suite définie par

u 0 =8 et pour tout entier naturel n, u n+1 =0,85u n +1,8 . 1) Dans un repère orthonormé, tracer les droites d'équations respectives y=0,85x+1,8 et y=x

. 2) Dans ce repère, placer u0 sur l'axe des abscisses, puis en utilisant les droites précédemment tracées, construire sur le même axe u1, u2 et u3. On laissera apparent les traits de construction. 3) À l'aide du graphique, conjecturer la limite de la suite (un). D'après Bac ES Polynésie 2009 Vidéo https://youtu.be/L7bBL4z-r90

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3 1) 2) 3) En continuant le tracé, celui-ci se rapprocherait de plus en plus de l'intersection des deux droites. On conjecture que la limite de la suite (un) est 12. Afficher la représentation graphique sur la calculatrice : Vidéo TI https://youtu.be/bRlvVs9KZuk Vidéo Casio https://youtu.be/9iDvDn3iWqQ Vidéo HP https://youtu.be/wML003kdLRo Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs1.pdfusesText_1
[PDF] etude thermique d un batiment ccp

[PDF] étude transversale analytique

[PDF] etude zone de chalandise insee

[PDF] études

[PDF] etudes bibliques gratuites pdf

[PDF] etudes bibliques pour les jeunes

[PDF] études de kiné ? l'étranger

[PDF] études de médecine au maroc

[PDF] études françaises s1 cours pdf

[PDF] études françaises s1 maroc

[PDF] études françaises s1 pdf

[PDF] études françaises s2 cours pdf

[PDF] études françaises s3 cours

[PDF] etudes medecine algerie

[PDF] études sociales 3e année ontario